import streamlit as st
import markdown2
import pdfkit
from io import BytesIO
from IPython.display import display, FileLink
import base64
from langchain_core.messages import AIMessage, HumanMessage
def create_pdf_from_markdown(logo_path, image_path, conversation,summary):
# Convertir la conversation en markdown
markdown_text = "\n".join([f"### {entry['speaker']}:\n {entry['text']}\n ---" for entry in conversation])
markdown_summary = f"{summary}\n --- \n ---"
st.write(markdown_summary)
# Convertir le markdown en HTML
html_content = markdown2.markdown(markdown_text)
html_summary = markdown2.markdown(markdown_summary)
# image_base64 = base64.b64encode(image_path).decode('utf-8')
# Créer le HTML complet avec les images et le texte
html_template = f"""
Rapport de Conversation {st.session_state["Nom de la marque"]}
RESUME
{html_summary}
Historique de la Conversation
{html_content}
"""
# Convertir le HTML en PDF
pdf = pdfkit.from_string(html_template, False)
return pdf
def get_conversation():
conversation = []
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
conversation.append({"speaker": "AI", "text": message.content})
elif isinstance(message, HumanMessage):
conversation.append({"speaker": "Moi", "text": message.content})
return conversation
def export_conversation(summary):
logo_path = "https://static.wixstatic.com/media/d7d3da_b69e03ae99224f7d8b6e358918e60071~mv2.png/v1/crop/x_173,y_0,w_1906,h_938/fill/w_242,h_119,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/BZIIIT_LOGO-HORIZ-COULEUR.png" # Replace with your image path
conversation = get_conversation()
image_path = "newplot.png"
pdf = create_pdf_from_markdown(logo_path, image_path, conversation,summary)
st.success("PDF généré avec succès!")
if st.download_button("Télécharger le PDF", data=pdf, file_name=f"Cartographie {st.session_state["Nom de la marque"]}.pdf", mime="application/pdf"):
st.rerun()