import os, json, requests, runpod import random, time import torch import numpy as np from PIL import Image import nodes from nodes import NODE_CLASS_MAPPINGS from nodes import load_custom_node from comfy_extras import nodes_custom_sampler from comfy_extras import nodes_flux from comfy import model_management load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-LLaVA-OneVision") DualCLIPLoader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() UNETLoader = NODE_CLASS_MAPPINGS["UNETLoader"]() VAELoader = NODE_CLASS_MAPPINGS["VAELoader"]() LoraLoader = NODE_CLASS_MAPPINGS["LoraLoader"]() FluxGuidance = nodes_flux.NODE_CLASS_MAPPINGS["FluxGuidance"]() RandomNoise = nodes_custom_sampler.NODE_CLASS_MAPPINGS["RandomNoise"]() BasicGuider = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicGuider"]() KSamplerSelect = nodes_custom_sampler.NODE_CLASS_MAPPINGS["KSamplerSelect"]() BasicScheduler = nodes_custom_sampler.NODE_CLASS_MAPPINGS["BasicScheduler"]() SamplerCustomAdvanced = nodes_custom_sampler.NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() VAEDecode = NODE_CLASS_MAPPINGS["VAEDecode"]() EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() DownloadAndLoadLLaVAOneVisionModel = NODE_CLASS_MAPPINGS["DownloadAndLoadLLaVAOneVisionModel"]() LLaVA_OneVision_Run = NODE_CLASS_MAPPINGS["LLaVA_OneVision_Run"]() LoadImage = NODE_CLASS_MAPPINGS["LoadImage"]() with torch.inference_mode(): llava_model = DownloadAndLoadLLaVAOneVisionModel.loadmodel("lmms-lab/llava-onevision-qwen2-0.5b-si", "cuda", "bf16", "sdpa")[0] clip = DualCLIPLoader.load_clip("t5xxl_fp16.safetensors", "clip_l.safetensors", "flux")[0] unet = UNETLoader.load_unet("flux1-dev.sft", "default")[0] vae = VAELoader.load_vae("ae.sft")[0] def closestNumber(n, m): q = int(n / m) n1 = m * q if (n * m) > 0: n2 = m * (q + 1) else: n2 = m * (q - 1) if abs(n - n1) < abs(n - n2): return n1 return n2 def download_file(url, save_dir='/content/ComfyUI/input'): os.makedirs(save_dir, exist_ok=True) file_name = url.split('/')[-1] file_path = os.path.join(save_dir, file_name) response = requests.get(url) response.raise_for_status() with open(file_path, 'wb') as file: file.write(response.content) return file_path @torch.inference_mode() def generate(input): values = input["input"] tag_image = values['input_image_check'] tag_image = download_file(tag_image) final_width = values['final_width'] tag_prompt = values['tag_prompt'] additional_prompt = values['additional_prompt'] tag_seed = values['tag_seed'] tag_temp = values['tag_temp'] tag_max_tokens = values['tag_max_tokens'] seed = values['seed'] steps = values['steps'] sampler_name = values['sampler_name'] scheduler = values['scheduler'] guidance = values['guidance'] lora_strength_model = values['lora_strength_model'] lora_strength_clip = values['lora_strength_clip'] lora_file = values['lora_file'] # model_management.unload_all_models() tag_image_width, tag_image_height = Image.open(tag_image).size tag_image_aspect_ratio = tag_image_width / tag_image_height final_height = final_width / tag_image_aspect_ratio tag_image = LoadImage.load_image(tag_image)[0] if tag_seed == 0: random.seed(int(time.time())) tag_seed = random.randint(0, 18446744073709551615) print(tag_seed) positive_prompt = LLaVA_OneVision_Run.run(tag_image, llava_model, tag_prompt, tag_max_tokens, True, tag_temp, tag_seed)[0] positive_prompt = f"{additional_prompt} {positive_prompt}" if seed == 0: random.seed(int(time.time())) seed = random.randint(0, 18446744073709551615) print(seed) unet_lora, clip_lora = LoraLoader.load_lora(unet, clip, lora_file, lora_strength_model, lora_strength_clip) cond, pooled = clip_lora.encode_from_tokens(clip_lora.tokenize(positive_prompt), return_pooled=True) cond = [[cond, {"pooled_output": pooled}]] cond = FluxGuidance.append(cond, guidance)[0] noise = RandomNoise.get_noise(seed)[0] guider = BasicGuider.get_guider(unet_lora, cond)[0] sampler = KSamplerSelect.get_sampler(sampler_name)[0] sigmas = BasicScheduler.get_sigmas(unet_lora, scheduler, steps, 1.0)[0] latent_image = EmptyLatentImage.generate(closestNumber(final_width, 16), closestNumber(final_height, 16))[0] sample, sample_denoised = SamplerCustomAdvanced.sample(noise, guider, sampler, sigmas, latent_image) decoded = VAEDecode.decode(vae, sample)[0].detach() Image.fromarray(np.array(decoded*255, dtype=np.uint8)[0]).save("/content/onevision_flux.png") result = "/content/onevision_flux.png" try: notify_uri = values['notify_uri'] del values['notify_uri'] notify_token = values['notify_token'] del values['notify_token'] discord_id = values['discord_id'] del values['discord_id'] if(discord_id == "discord_id"): discord_id = os.getenv('com_camenduru_discord_id') discord_channel = values['discord_channel'] del values['discord_channel'] if(discord_channel == "discord_channel"): discord_channel = os.getenv('com_camenduru_discord_channel') discord_token = values['discord_token'] del values['discord_token'] if(discord_token == "discord_token"): discord_token = os.getenv('com_camenduru_discord_token') job_id = values['job_id'] del values['job_id'] # default_filename = os.path.basename(result) # with open(result, "rb") as file: # files = {default_filename: file.read()} # payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} # response = requests.post( # f"https://discord.com/api/v9/channels/{discord_channel}/messages", # data=payload, # headers={"Authorization": f"Bot {discord_token}"}, # files=files # ) # response.raise_for_status() # result_url = response.json()['attachments'][0]['url'] with open(result, 'rb') as file: response = requests.post("https://upload.tost.ai/api/v1", files={'file': file}) response.raise_for_status() result_url = response.text notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} web_notify_uri = os.getenv('com_camenduru_web_notify_uri') web_notify_token = os.getenv('com_camenduru_web_notify_token') if(notify_uri == "notify_uri"): requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) else: requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) return {"jobId": job_id, "result": result_url, "status": "DONE"} except Exception as e: error_payload = {"jobId": job_id, "status": "FAILED"} try: if(notify_uri == "notify_uri"): requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) else: requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) except: pass return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} finally: if os.path.exists(result): os.remove(result) runpod.serverless.start({"handler": generate})