# Code credit: [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM).
import torch
import gradio as gr
import numpy as np
from segment_anything import sam_model_registry, SamPredictor
from segment_anything.onnx import SamPredictorONNX
from PIL import ImageDraw
from utils.tools_gradio import fast_process
import copy
import argparse
# Use ONNX to speed up the inference.
ENABLE_ONNX = True
parser = argparse.ArgumentParser(
description="Host EdgeSAM as a local web service."
)
parser.add_argument(
"--checkpoint",
default="weights/edge_sam_3x.pth",
type=str,
help="The path to the PyTorch checkpoint of EdgeSAM."
)
parser.add_argument(
"--encoder-onnx-path",
default="weights/edge_sam_3x_encoder.onnx",
type=str,
help="The path to the ONNX model of EdgeSAM's encoder."
)
parser.add_argument(
"--decoder-onnx-path",
default="weights/edge_sam_3x_decoder.onnx",
type=str,
help="The path to the ONNX model of EdgeSAM's decoder."
)
parser.add_argument(
"--server-name",
default="0.0.0.0",
type=str,
help="The server address that this demo will be hosted on."
)
parser.add_argument(
"--port",
default=8080,
type=int,
help="The port that this demo will be hosted on."
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if ENABLE_ONNX:
predictor = SamPredictorONNX(args.encoder_onnx_path, args.decoder_onnx_path)
else:
sam = sam_model_registry["edge_sam"](checkpoint=args.checkpoint, upsample_mode="bicubic")
sam = sam.to(device=device)
sam.eval()
predictor = SamPredictor(sam)
examples = [
["assets/1.jpeg"],
["assets/2.jpeg"],
["assets/3.jpeg"],
["assets/4.jpeg"],
["assets/5.jpeg"],
["assets/6.jpeg"],
["assets/7.jpeg"],
["assets/8.jpeg"],
["assets/9.jpeg"],
["assets/10.jpeg"],
["assets/11.jpeg"],
["assets/12.jpeg"],
["assets/13.jpeg"],
["assets/14.jpeg"],
["assets/15.jpeg"],
["assets/16.jpeg"]
]
# Description
title = "
EdgeSAM [GitHub] "
description_p = """ # Instructions for point mode
1. Upload an image or click one of the provided examples.
2. Select the point type.
3. Click once or multiple times on the image to indicate the object of interest.
4. The Clear button clears all the points.
5. The Reset button resets both points and the image.
"""
description_b = """ # Instructions for box mode
1. Upload an image or click one of the provided examples.
2. Click twice on the image (diagonal points of the box).
3. The Clear button clears the box.
4. The Reset button resets both the box and the image.
"""
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
global_points = []
global_point_label = []
global_box = []
global_image = None
global_image_with_prompt = None
def reset():
global global_points
global global_point_label
global global_box
global global_image
global global_image_with_prompt
global_points = []
global_point_label = []
global_box = []
global_image = None
global_image_with_prompt = None
return None
def reset_all():
global global_points
global global_point_label
global global_box
global global_image
global global_image_with_prompt
global_points = []
global_point_label = []
global_box = []
global_image = None
global_image_with_prompt = None
return None, None
def clear():
global global_points
global global_point_label
global global_box
global global_image
global global_image_with_prompt
global_points = []
global_point_label = []
global_box = []
global_image_with_prompt = copy.deepcopy(global_image)
return global_image
def on_image_upload(image, input_size=1024):
global global_points
global global_point_label
global global_box
global global_image
global global_image_with_prompt
global_points = []
global_point_label = []
global_box = []
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
global_image = copy.deepcopy(image)
global_image_with_prompt = copy.deepcopy(image)
print("Image changed")
nd_image = np.array(global_image)
predictor.set_image(nd_image)
return image
def convert_box(xyxy):
min_x = min(xyxy[0][0], xyxy[1][0])
max_x = max(xyxy[0][0], xyxy[1][0])
min_y = min(xyxy[0][1], xyxy[1][1])
max_y = max(xyxy[0][1], xyxy[1][1])
xyxy[0][0] = min_x
xyxy[1][0] = max_x
xyxy[0][1] = min_y
xyxy[1][1] = max_y
return xyxy
def segment_with_points(
label,
evt: gr.SelectData,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=False,
):
global global_points
global global_point_label
global global_image_with_prompt
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 5, (97, 217, 54) if label == "Positive" else (237, 34, 13)
global_points.append([x, y])
global_point_label.append(1 if label == "Positive" else 0)
print(f'global_points: {global_points}')
print(f'global_point_label: {global_point_label}')
draw = ImageDraw.Draw(global_image_with_prompt)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
image = global_image_with_prompt
if ENABLE_ONNX:
global_points_np = np.array(global_points)[None]
global_point_label_np = np.array(global_point_label)[None]
masks, scores, _ = predictor.predict(
point_coords=global_points_np,
point_labels=global_point_label_np,
)
masks = masks.squeeze(0)
scores = scores.squeeze(0)
else:
global_points_np = np.array(global_points)
global_point_label_np = np.array(global_point_label)
masks, scores, logits = predictor.predict(
point_coords=global_points_np,
point_labels=global_point_label_np,
num_multimask_outputs=4,
use_stability_score=True
)
print(f'scores: {scores}')
area = masks.sum(axis=(1, 2))
print(f'area: {area}')
annotations = np.expand_dims(masks[scores.argmax()], axis=0)
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
return seg
def segment_with_box(
evt: gr.SelectData,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=False,
):
global global_box
global global_image
global global_image_with_prompt
x, y = evt.index[0], evt.index[1]
point_radius, point_color, box_outline = 5, (97, 217, 54), 5
box_color = (0, 255, 0)
if len(global_box) == 0:
global_box.append([x, y])
elif len(global_box) == 1:
global_box.append([x, y])
elif len(global_box) == 2:
global_image_with_prompt = copy.deepcopy(global_image)
global_box = [[x, y]]
print(f'global_box: {global_box}')
draw = ImageDraw.Draw(global_image_with_prompt)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
image = global_image_with_prompt
if len(global_box) == 2:
global_box = convert_box(global_box)
xy = (global_box[0][0], global_box[0][1], global_box[1][0], global_box[1][1])
draw.rectangle(
xy,
outline=box_color,
width=box_outline
)
global_box_np = np.array(global_box)
if ENABLE_ONNX:
point_coords = global_box_np.reshape(2, 2)[None]
point_labels = np.array([2, 3])[None]
masks, _, _ = predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
)
annotations = masks[:, 0, :, :]
else:
masks, scores, _ = predictor.predict(
box=global_box_np,
num_multimask_outputs=1,
)
annotations = masks
seg = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
return seg
return image
img_p = gr.Image(label="Input with points", type="pil")
img_b = gr.Image(label="Input with box", type="pil")
with gr.Blocks(css=css, title="EdgeSAM") as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode") as tab_p:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_p.render()
with gr.Column(scale=1):
with gr.Row():
add_or_remove = gr.Radio(
["Positive", "Negative"],
value="Positive",
label="Point Type"
)
with gr.Column():
clear_btn_p = gr.Button("Clear", variant="secondary")
reset_btn_p = gr.Button("Reset", variant="secondary")
with gr.Row():
gr.Markdown(description_p)
with gr.Row():
with gr.Column():
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[img_p],
outputs=[img_p],
examples_per_page=8,
fn=on_image_upload,
run_on_click=True
)
with gr.Tab("Box mode") as tab_b:
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_b.render()
with gr.Row():
with gr.Column():
clear_btn_b = gr.Button("Clear", variant="secondary")
reset_btn_b = gr.Button("Reset", variant="secondary")
gr.Markdown(description_b)
with gr.Row():
with gr.Column():
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[img_b],
outputs=[img_b],
examples_per_page=8,
fn=on_image_upload,
run_on_click=True
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"")
img_p.upload(on_image_upload, img_p, [img_p])
img_p.select(segment_with_points, [add_or_remove], img_p)
clear_btn_p.click(clear, outputs=[img_p])
reset_btn_p.click(reset, outputs=[img_p])
tab_p.select(fn=reset_all, outputs=[img_p, img_b])
img_b.upload(on_image_upload, img_b, [img_b])
img_b.select(segment_with_box, outputs=[img_b])
clear_btn_b.click(clear, outputs=[img_b])
reset_btn_b.click(reset, outputs=[img_b])
tab_b.select(fn=reset_all, outputs=[img_p, img_b])
demo.queue()
# demo.launch(server_name=args.server_name, server_port=args.port)
demo.launch()