import os from getpass import getpass from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings import torch from langchain_huggingface import HuggingFaceEndpoint from langchain_core.caches import InMemoryCache from langchain_core.globals import set_llm_cache from langchain_chroma import Chroma from langchain.chains import RetrievalQA import gradio import PyPDF2 import json import re import time import threading from langchain_core.runnables import RunnableConfig, RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableLambda #hfapi_key = getpass("Enter you HuggingFace access token:") #os.environ["HF_TOKEN"] = hfapi_key #os.environ["HUGGINGFACEHUB_API_TOKEN"] = hfapi_key hfapi_key = os.getenv("Mytoken") set_llm_cache(InMemoryCache()) # Set cache globally persist_directory = 'docs/chroma/' pdf_path = 'AIML.pdf' #################################### def get_documents(): print("$$$$$ ENTER INTO get_documents $$$$$") with open(pdf_path, 'rb') as file: # Create a PDF reader object pdf_reader = PyPDF2.PdfReader(file) # Extract text from all pages full_text = "" for page in pdf_reader.pages: full_text += page.extract_text() + "\n" print("@@@@@@ EXIT FROM get_documents @@@@@") return full_text #################################### def getTextSplits(): print("$$$$$ ENTER INTO getDocSplitter $$$$$") text_splitter = RecursiveCharacterTextSplitter( chunk_size = 512, chunk_overlap = 128 ) texts = text_splitter.split_text(get_documents()) #print("Page content ", texts) print("@@@@@@ EXIT FROM getDocSplitter @@@@@") return texts #################################### def getEmbeddings(): print("$$$$$ ENTER INTO getEmbeddings $$$$$") modelPath="mixedbread-ai/mxbai-embed-large-v1" device = "cuda" if torch.cuda.is_available() else "cpu" # Create a dictionary with model configuration options, specifying to use the CPU for computations model_kwargs = {'device': device} # cuda/cpu # Create a dictionary with encoding options, specifically setting 'normalize_embeddings' to False encode_kwargs = {'normalize_embeddings': False} embedding = HuggingFaceEmbeddings( model_name=modelPath, # Provide the pre-trained model's path model_kwargs=model_kwargs, # Pass the model configuration options encode_kwargs=encode_kwargs # Pass the encoding options ) print("@@@@@@ EXIT FROM getEmbeddings @@@@@") return embedding #################################### def getLLM(): print("$$$$$ ENTER INTO getLLM $$$$$") model_kwargs = { 'device': "cuda" if torch.cuda.is_available() else "cpu", 'stream': True # Ensure streaming is enabled } llm = HuggingFaceEndpoint( repo_id="HuggingFaceH4/zephyr-7b-beta", task="text-generation", max_new_tokens= 512, do_sample= True, temperature = 0.7, repetition_penalty= 1.2, top_k = 10 #model_kwargs=model_kwargs # Pass the model configuration options ) print("@@@@@@ EXIT FROM getLLM @@@@@") return llm #################################### def is_chroma_db_present(directory: str): #Check if the directory exists and contains any files. return os.path.exists(directory) and len(os.listdir(directory)) > 0 #################################### def getRetiriver(query, metadata_filter:None): print("$$$$$ ENTER INTO getRetiriver $$$$$") # Classify query query_type = classify_query(query) print("Query classification", query_type) k_default = 2 fetch_k_default = 5 search_type_default = "mmr" # Routing logic if query_type == 'concept': # For conceptual queries, prioritize comprehensive context k_default = 5 fetch_k_default = 10 search_type_default = "mmr" elif query_type == 'example': # For example queries, focus on more specific, relevant contexts search_type_default = "similarity" elif query_type == 'code': # For code-related queries, use a more targeted retrieval search_type_default = "similarity" if is_chroma_db_present(persist_directory): print(f"Chroma vector DB found in '{persist_directory}' and will be loaded.") # Load vector store from the local directory vectordb = Chroma( persist_directory=persist_directory, embedding_function=getEmbeddings(), collection_name="ai_tutor") else: vectordb = Chroma.from_texts( collection_name="ai_tutor", texts=getTextSplits(), embedding=getEmbeddings(), persist_directory=persist_directory, # save the directory ) print("metadata_filter", metadata_filter) if(metadata_filter): metadata_filter_dict = { "result": metadata_filter # ChromaDB will perform a substring search } print("@@@@@@ EXIT FROM getRetiriver with metadata_filter @@@@@") if search_type_default == "similarity": return vectordb.as_retriever(search_type=search_type_default, search_kwargs={"k": k_default, "filter": metadata_filter_dict}) return vectordb.as_retriever(search_type=search_type_default, search_kwargs={"k": k_default, "fetch_k":fetch_k_default, "filter": metadata_filter_dict}) print("@@@@@@ EXIT FROM getRetiriver without metadata_filter @@@@@") if search_type_default == "similarity": return vectordb.as_retriever(search_type=search_type_default, search_kwargs={"k": k_default}) return vectordb.as_retriever(search_type=search_type_default, search_kwargs={"k": k_default, "fetch_k":fetch_k_default}) #################################### def classify_query(query): """ Classify the type of query to determine routing strategy. Query Types: - 'concept': Theoretical or conceptual questions - 'example': Requests for practical examples - 'code': Coding or implementation-related queries - 'general': Default catch-all category """ query = query.lower() # Concept detection patterns concept_patterns = [ r'what is', r'define', r'explain', r'describe', r'theory of', r'concept of' ] # Example detection patterns example_patterns = [ r'give an example', r'show me an example', r'demonstrate', r'illustrate' ] # Code-related detection patterns code_patterns = [ r'how to implement', r'code for', r'python code', r'algorithm implementation', r'write a program' ] # Check patterns for pattern in concept_patterns: if re.search(pattern, query): return 'concept' for pattern in example_patterns: if re.search(pattern, query): return 'example' for pattern in code_patterns: if re.search(pattern, query): return 'code' return 'general' #################################### def get_rag_response(query, metadata_filter=None): print("$$$$$ ENTER INTO get_rag_response $$$$$") # Create the retriever retriever = getRetiriver(query, metadata_filter) # Get the LLM llm = getLLM() # Create a prompt template template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Context: {context} Question: {question} Helpful Answer:""" prompt = PromptTemplate.from_template(template) # Function to prepare input for the chain def prepare_inputs(inputs): retrieved_docs = retriever.invoke(inputs["question"]) context = format_docs(retrieved_docs) return { "context": context, "question": inputs["question"] } # Construct the RAG chain with streaming rag_chain = ( RunnablePassthrough() | RunnableLambda(prepare_inputs) | prompt | llm | StrOutputParser() ) # Stream the response full_response = "" for chunk in rag_chain.stream({"question": query}): full_response += chunk # Add a small delay to create a streaming effect time.sleep(0.05) # 50 milliseconds between chunk updates yield full_response #################################### # Utility function to format documents def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) #################################### # Input from user in_question = gradio.Textbox(lines=10, placeholder=None, value="What are Artificial Intelligence and Machine Learning?", label='Ask a question to your AI Tutor') # Optional metadata filter input in_metadata_filter = gradio.Textbox(lines=2, placeholder=None, label='Optionally add a filter word') # Output prediction out_response = gradio.Textbox(label='Response', interactive=False, show_copy_button=True) # Gradio interface to generate UI iface = gradio.Interface( fn = get_rag_response, inputs=[in_question, in_metadata_filter], outputs=out_response, title="Your AI Tutor", description="Ask a question, optionally add metadata filters.", allow_flagging='never', stream_every=0.5 ) iface.launch(share = True)