import streamlit as st import pickle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import PassiveAggressiveClassifier model = PassiveAggressiveClassifier(max_iter=50) with open('tfidf.pickle', 'rb') as f: tfidf = pickle.load(f) PAGE_CONFIG = {"page_title":"My first ML app","page_icon":":smiley:","layout":"centered"} st.set_page_config(**PAGE_CONFIG) st.title("My first ML app") st.subheader("Here is my (not so) awesome learning result") menu = ["Home","About my startup"] choice = st.sidebar.selectbox('Menu',menu) if choice == 'Home': st.subheader("Let's get down to the details.") title = st.text_input('News title', 'Queen Elizabeth buys an Unicorn') with open('model.pkl', 'rb') as f: model = pickle.load(f) def predict_news(news_text): prediction = model.predict(tfidf.transform([news_text])) if prediction[0] == 1: return("Possibly fake news") else: return("Possibly real news") result = predict_news(title) st.write('Fake classification: ', result)