import streamlit as st import os import torch from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # Check for CUDA availability device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Caching the model loading @st.cache_resource def load_rag_model(): return RAGMultiModalModel.from_pretrained("vidore/colpali") @st.cache_resource def load_qwen_model(): return Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16 ).to(device).eval() @st.cache_resource def load_processor(): return AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) # Load models RAG = load_rag_model() model = load_qwen_model() processor = load_processor() st.title("Multimodal RAG App") st.warning("⚠️ Disclaimer: This app is currently running on CPU, which may result in slow processing times. For optimal performance, download and run the app locally on a machine with GPU support.") # Add download link st.markdown("[📥 Download the app code](https://huggingface.co/spaces/clayton07/colpali-qwen2-ocr/blob/main/app.py)") # Initialize session state for tracking if index is created if 'index_created' not in st.session_state: st.session_state.index_created = False # File uploader image_source = st.radio("Choose image source:", ("Upload an image", "Use example image")) if image_source == "Upload an image": uploaded_file = st.file_uploader("Choose an image file", type=["png", "jpg", "jpeg"]) else: # Use a pre-defined example image example_image_path = "hindi-qp.jpg" uploaded_file = example_image_path if uploaded_file is not None: # If using the example image, no need to save it if image_source == "Upload an image": with open("temp_image.png", "wb") as f: f.write(uploaded_file.getvalue()) image_path = "temp_image.png" else: image_path = uploaded_file if not st.session_state.index_created: # Initialize the index for the first image RAG.index( input_path=image_path, index_name="temp_index", store_collection_with_index=False, overwrite=True ) st.session_state.index_created = True else: # Add to the existing index for subsequent images RAG.add_to_index( input_item=image_path, store_collection_with_index=False ) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) # Text query input text_query = st.text_input("Enter your query about the image:") max_new_tokens = st.slider("Max new tokens for response", min_value=100, max_value=1000, value=100, step=10) if text_query: with st.spinner( f'Processing your query... This may take a while due to CPU processing. Generating up to {max_new_tokens} tokens.'): # Perform RAG search results = RAG.search(text_query, k=2) # Process with Qwen2VL model messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, }, {"type": "text", "text": text_query}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens) # Using the slider value here generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # Display results st.subheader("Results:") st.write(output_text[0]) # Clean up temporary file if image_source == "Upload an image": os.remove("temp_image.png") else: st.write("Please upload an image to get started.")