import streamlit as st import os import torch from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import re # Check for CUDA availability device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Caching the model loading @st.cache_resource def load_rag_model(): return RAGMultiModalModel.from_pretrained("vidore/colpali") @st.cache_resource def load_qwen_model(): return Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16 ).to(device).eval() @st.cache_resource def load_processor(): return AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) # Load models RAG = load_rag_model() model = load_qwen_model() processor = load_processor() st.title("Multimodal RAG App") st.warning("⚠️ Disclaimer: This app is currently running on CPU, which may result in slow processing times (even loading the image may take more than 10 minutes). For optimal performance, download and run the app locally on a machine with GPU support.") # Add download link st.markdown("[📥 Download the app code](https://github.com/Claytonn7/qwen2-colpali-ocr)") # Initialize session state for tracking if index is created if 'index_created' not in st.session_state: st.session_state.index_created = False # File uploader image_source = st.radio("Choose image source:", ("Upload an image", "Use example image")) if image_source == "Upload an image": uploaded_file = st.file_uploader("Choose an image file", type=["png", "jpg", "jpeg"]) else: # Use a pre-defined example image example_image_path = "hindi-qp.jpg" uploaded_file = example_image_path if uploaded_file is not None: # If using the example image, no need to save it if image_source == "Upload an image": with open("temp_image.png", "wb") as f: f.write(uploaded_file.getvalue()) image_path = "temp_image.png" else: image_path = uploaded_file if not st.session_state.index_created: # Initialize the index for the first image RAG.index( input_path=image_path, index_name="temp_index", store_collection_with_index=False, overwrite=True ) st.session_state.index_created = True else: # Add to the existing index for subsequent images RAG.add_to_index( input_item=image_path, store_collection_with_index=False ) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) # Text query input text_query = st.text_input("Enter a single word to search for:") extract_query = "extract text from the image" max_new_tokens = st.slider("Max new tokens for response", min_value=100, max_value=1000, value=100, step=10) if text_query: with st.spinner( f'Processing your query... This may take a while due to CPU processing. Generating up to {max_new_tokens} tokens.'): # Perform RAG search results = RAG.search(text_query, k=2) # Process with Qwen2VL model messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, }, {"type": "text", "text": extract_query}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(device) generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens) # Using the slider value here generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) def highlight_text(text, query): if not query.strip(): return text escaped_query = re.escape(query) pattern = r'\b' + escaped_query + r'\b' def replacer(match): return f'{match.group(0)}' highlighted_text = re.sub(pattern, replacer, text, flags=re.IGNORECASE) return highlighted_text # Display results highlighted_output = highlight_text(output_text[0], text_query) # Display results st.subheader("Extracted Text (with query highlighted):") st.markdown(highlighted_output, unsafe_allow_html=True) # st.subheader("Results:") # st.write(output_text[0]) # Clean up temporary file if image_source == "Upload an image": os.remove("temp_image.png") else: st.write("Please upload an image to get started.")