import math import random import os import cv2 import gradio as gr import numpy as np import PIL import gc import tempfile #import spaces import torch from diffusers import LCMScheduler from diffusers.models import ControlNetModel from diffusers.utils import load_image from insightface.app import FaceAnalysis from PIL import Image from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline from style_template import styles # global variable MAX_SEED = np.iinfo(np.int32).max #device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.backends.mps.is_available(): device = "mps" torch_dtype = torch.float32 elif torch.cuda.is_available(): device = "cuda" else: device = "cpu" STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "Watercolor" # download checkpoints from huggingface_hub import hf_hub_download hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints") hf_hub_download( repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints", ) hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints") hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints") # Load face encoder app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"]) app.prepare(ctx_id=0, det_size=(640, 640)) # Path to InstantID models face_adapter = "./checkpoints/ip-adapter.bin" controlnet_path = "./checkpoints/ControlNetModel" lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors" # Load pipeline #controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch_dtype) base_model_path = "wangqixun/YamerMIX_v8" pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( base_model_path, controlnet=controlnet, #torch_dtype=torch.float16, torch_dtype=torch_dtype, safety_checker=None, feature_extractor=None, ) num_inference_steps = 30 guidance_scale = 5 #pipe.cuda() if os.environ.get("MODE") == "Default": print("Default") num_inference_steps = 30 guidance_scale = 5 # LCM if os.environ.get("MODE") == "LCM": print("LCM") num_inference_steps = 4 guidance_scale = 2 pipe.load_lora_weights(lcm_lora_path) pipe.fuse_lora() pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) print(f"default: num_inference_steps={num_inference_steps}, guidance_scale={guidance_scale}") if device == 'mps': pipe.to("mps", torch_dtype) pipe.enable_attention_slicing() elif device == 'cuda': pipe.cuda() pipe.load_ip_adapter_instantid(face_adapter) #pipe.image_proj_model.to("cuda") #pipe.unet.to("cuda") if device == 'mps' or device == 'cuda': pipe.image_proj_model.to(device) pipe.unet.to(device) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def remove_tips(): return gr.update(visible=False) def get_example(): case = [ [ "./examples/yann-lecun_resize.jpg", "a man", "Snow", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ "./examples/musk_resize.jpeg", "a man", "Mars", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ "./examples/sam_resize.png", "a man", "Jungle", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", ], [ "./examples/schmidhuber_resize.png", "a man", "Neon", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ "./examples/kaifu_resize.png", "a man", "Vibrant Color", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], ] return case def run_for_examples(face_file, prompt, style, negative_prompt): return generate_image(face_file, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42) def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly( (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 ) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = Image.fromarray(out_img.astype(np.uint8)) return out_img_pil def resize_img( input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64, ): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio * w), round(ratio * h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = np.array(input_image) input_image = Image.fromarray(res) return input_image def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) return p.replace("{prompt}", positive), n + " " + negative def check_input_image(face_image): if face_image is None: raise gr.Error("Cannot find any input face image! Please upload the face image") #@spaces.GPU def generate_image( face_image_path, pose_image_path, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True), ): if prompt is None: prompt = "a person" # apply the style template prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) face_image = load_image(face_image_path) face_image = resize_img(face_image) face_image_cv2 = convert_from_image_to_cv2(face_image) height, width, _ = face_image_cv2.shape # Extract face features face_info = app.get(face_image_cv2) if len(face_info) == 0: raise gr.Error("Cannot find any face in the image! Please upload another person image") face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1])[ -1 ] # only use the maximum face face_emb = face_info["embedding"] face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) if pose_image_path is not None: pose_image = load_image(pose_image_path) pose_image = resize_img(pose_image) pose_image_cv2 = convert_from_image_to_cv2(pose_image) face_info = app.get(pose_image_cv2) if len(face_info) == 0: raise gr.Error("Cannot find any face in the reference image! Please upload another person image") face_info = face_info[-1] face_kps = draw_kps(pose_image, face_info["kps"]) width, height = face_kps.size if enhance_face_region: control_mask = np.zeros([height, width, 3]) x1, y1, x2, y2 = face_info["bbox"] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) control_mask[y1:y2, x1:x2] = 255 control_mask = Image.fromarray(control_mask.astype(np.uint8)) else: control_mask = None generator = torch.Generator(device=device).manual_seed(seed) print("Start inference...") print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") pipe.set_ip_adapter_scale(adapter_strength_ratio) images = pipe( prompt=prompt, negative_prompt=negative_prompt, image_embeds=face_emb, image=face_kps, control_mask=control_mask, controlnet_conditioning_scale=float(identitynet_strength_ratio), num_inference_steps=num_steps, guidance_scale=guidance_scale, height=height, width=width, generator=generator, ).images gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir()) temp_file_path = os.path.join(gradio_temp_dir, "image.png") images[0].save(temp_file_path, format="PNG") print(f"Image saved in: {temp_file_path}") gc.collect() if device == 'mps': torch.mps.empty_cache() elif device == 'cuda': torch.cuda.empty_cache() return images[0], gr.update(visible=True), temp_file_path ### Description title = r"""