import sys sys.path.append('./') import os import gc import cv2 import torch import random import tempfile import numpy as np from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline #import spaces import gradio as gr from huggingface_hub import hf_hub_download from ip_adapter import IPAdapterXL #import os #os.system("git lfs install") #os.system("git clone https://huggingface.co/h94/IP-Adapter") #os.system("mv IP-Adapter/sdxl_models sdxl_models") # global variable MAX_SEED = np.iinfo(np.int32).max if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") #device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if str(device).__contains__("cuda") or str(device).__contains__("mps") else torch.float32 # initialization base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" image_encoder_path = "sdxl_models/image_encoder" ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin" controlnet_path = "diffusers/controlnet-canny-sdxl-1.0" controlnet = ControlNetModel.from_pretrained(controlnet_path, use_safetensors=False, torch_dtype=dtype).to(device) # load SDXL pipeline pipe = StableDiffusionXLControlNetPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=dtype, add_watermarker=False, ) # load ip-adapter # target_blocks=["block"] for original IP-Adapter # target_blocks=["up_blocks.0.attentions.1"] for style blocks only # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def resize_img( input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64, ): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio * w), round(ratio * h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[ offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new ] = np.array(input_image) input_image = Image.fromarray(res) return input_image def get_example(): case = [ [ "./assets/0.jpg", None, "a cat, masterpiece, best quality, high quality", 1.0, 0.0 ], [ "./assets/1.jpg", None, "a cat, masterpiece, best quality, high quality", 1.0, 0.0 ], [ "./assets/2.jpg", None, "a cat, masterpiece, best quality, high quality", 1.0, 0.0 ], [ "./assets/3.jpg", None, "a cat, masterpiece, best quality, high quality", 1.0, 0.0 ], [ "./assets/2.jpg", "./assets/yann-lecun.jpg", "a man, masterpiece, best quality, high quality", 1.0, 0.6 ], ] return case def run_for_examples(style_image, source_image, prompt, scale, control_scale): return create_image( image_pil=style_image, input_image=source_image, prompt=prompt, n_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", scale=scale, control_scale=control_scale, guidance_scale=5, num_samples=1, num_inference_steps=20, seed=42, target="Load only style blocks", neg_content_prompt="", neg_content_scale=0, ) #@spaces.GPU(enable_queue=True) def create_image(image_pil, input_image, prompt, n_prompt, scale, control_scale, guidance_scale, num_samples, num_inference_steps, seed, target="Load only style blocks", neg_content_prompt=None, neg_content_scale=0, # progress=gr.Progress(track_tqdm=True) ): if target =="Load original IP-Adapter": # target_blocks=["blocks"] for original IP-Adapter ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]) elif target=="Load only style blocks": # target_blocks=["up_blocks.0.attentions.1"] for style blocks only ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"]) elif target == "Load style+layout block": # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"]) if input_image is not None: input_image = resize_img(input_image, max_side=1024) cv_input_image = pil_to_cv2(input_image) detected_map = cv2.Canny(cv_input_image, 50, 200) canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)) else: canny_map = Image.new('RGB', (1024, 1024), color=(255, 255, 255)) control_scale = 0 if float(control_scale) == 0: canny_map = canny_map.resize((1024,1024)) if len(neg_content_prompt) > 0 and neg_content_scale != 0: images = ip_model.generate(pil_image=image_pil, prompt=prompt, negative_prompt=n_prompt, scale=scale, guidance_scale=guidance_scale, num_samples=num_samples, num_inference_steps=num_inference_steps, seed=seed, image=canny_map, controlnet_conditioning_scale=float(control_scale), neg_content_prompt=neg_content_prompt, neg_content_scale=neg_content_scale ) else: images = ip_model.generate(pil_image=image_pil, prompt=prompt, negative_prompt=n_prompt, scale=scale, guidance_scale=guidance_scale, num_samples=num_samples, num_inference_steps=num_inference_steps, seed=seed, image=canny_map, controlnet_conditioning_scale=float(control_scale), ) gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir()) temp_file_path = os.path.join(gradio_temp_dir, "image.png") images[0].save(temp_file_path, format="PNG") print(f"Image saved in: {temp_file_path}") return images, temp_file_path def pil_to_cv2(image_pil): image_np = np.array(image_pil) image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) return image_cv2 def clear_cache(device="cuda"): gc.collect() if device == 'mps': torch.mps.empty_cache() elif device == 'cuda': torch.cuda.empty_cache() print(f"{device} cache cleared!") # Description title = r"""

InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation

""" description = r""" Official 🤗 Gradio demo for InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation.
How to use:
1. Upload a style image. 2. Set stylization mode, only use style block by default. 2. Enter a text prompt, as done in normal text-to-image models. 3. Click the Submit button to begin customization. 4. Share your stylized photo with your friends and enjoy! 😊 Advanced usage:
1. Click advanced options. 2. Upload another source image for image-based stylization using ControlNet. 3. Enter negative content prompt to avoid content leakage. """ article = r""" --- 📝 **Citation**
If our work is helpful for your research or applications, please cite us via: ```bibtex @article{wang2024instantstyle, title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, journal={arXiv preprint arXiv:2404.02733}, year={2024} } ``` 📧 **Contact**
If you have any questions, please feel free to open an issue or directly reach us out at haofanwang.ai@gmail.com. """ css = """ footer { visibility: hidden } #row-height { height: 65px !important } """ block = gr.Blocks(css=css).queue(max_size=10, api_open=False) with block: # description gr.Markdown(title) #gr.Markdown(description) with gr.Row(equal_height=True): with gr.Column(): with gr.Row(): with gr.Column(): image_pil = gr.Image(label="Style Image", type='pil') target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"], value="Load only style blocks", label="Style mode") prompt = gr.Textbox(label="Prompt", value="a cat, masterpiece, best quality, high quality") scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale") with gr.Accordion(open=False, label="Advanced Options"): with gr.Column(): src_image_pil = gr.Image(label="Source Image (optional)", type='pil') control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale") n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry") neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="") neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale") guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale") num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples") num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps") seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value") randomize_seed = gr.Checkbox(label="Randomize seed", value=True) #generate_button = gr.Button("Generate Image") with gr.Column(): generated_image = gr.Gallery(label="Generated Image", scale=0.3) download_image = gr.File(label="Download Image", elem_id="row-height", scale=0) generate_button = gr.Button("Generate Image", min_width=2000, scale=0) gr.Markdown(description) generate_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=create_image, inputs=[image_pil, src_image_pil, prompt, n_prompt, scale, control_scale, guidance_scale, num_samples, num_inference_steps, seed, target, neg_content_prompt, neg_content_scale], outputs=[generated_image, download_image] ).then( fn=clear_cache, inputs=[], outputs=None ) gr.Examples( examples=get_example(), inputs=[image_pil, src_image_pil, prompt, scale, control_scale], fn=run_for_examples, outputs=[generated_image], #cache_examples=True, ) gr.Markdown(article) block.launch()