import anthropic import streamlit as st from streamlit.logger import get_logger from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.llms import OpenAI from langchain.llms import HuggingFaceEndpoint from langchain.chat_models import ChatAnthropic from langchain.vectorstores import SupabaseVectorStore from stats import add_usage memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True) openai_api_key = st.secrets.openai_api_key anthropic_api_key = st.secrets.anthropic_api_key hf_api_key = st.secrets.hf_api_key logger = get_logger(__name__) def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db, stats): if 'chat_history' not in st.session_state: st.session_state['chat_history'] = [] query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500) columns = st.columns(2) with columns[0]: button = st.button("Ask") with columns[1]: clear_history = st.button("Clear History", type='secondary') st.markdown("---\n\n") if clear_history: # Clear memory in Langchain memory.clear() st.session_state['chat_history'] = [] st.experimental_rerun() if button: qa = None add_usage(stats_db, "chat", "prompt" + query, {"model": model, "temperature": st.session_state['temperature']}) if model.startswith("gpt"): logger.info('Using OpenAI model %s', model) qa = ConversationalRetrievalChain.from_llm( OpenAI( model_name=st.session_state['model'], openai_api_key=openai_api_key, temperature=st.session_state['temperature'], max_tokens=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True) elif anthropic_api_key and model.startswith("claude"): logger.info('Using Anthropics model %s', model) qa = ConversationalRetrievalChain.from_llm( ChatAnthropic( model=st.session_state['model'], anthropic_api_key=anthropic_api_key, temperature=st.session_state['temperature'], max_tokens_to_sample=st.session_state['max_tokens']), vector_store.as_retriever(), memory=memory, verbose=True, max_tokens_limit=102400) elif hf_api_key: logger.info('Using HF model %s', model) # print(st.session_state['max_tokens']) endpoint_url = ("https://api-inference.huggingface.co/models/"+ model) model_kwargs = {"temperature" : st.session_state['temperature'], "max_new_tokens" : st.session_state['max_tokens'], "return_full_text" : False} hf = HuggingFaceEndpoint( endpoint_url=endpoint_url, task="text-generation", huggingfacehub_api_token=hf_api_key, model_kwargs=model_kwargs ) qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": st.session_state["username"]}}), memory=memory, verbose=True, return_source_documents=True) print("Question>") print(query) st.session_state['chat_history'].append(("You", query)) # Generate model's response and add it to chat history model_response = qa({"question": query}) logger.info('Result: %s', model_response["answer"]) sources = model_response["source_documents"] logger.info('Sources: %s', model_response["source_documents"]) if len(sources) > 0: st.session_state['chat_history'].append(("Safety Copilot", model_response["answer"])) else: st.session_state['chat_history'].append(("Safety Copilot", "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email copilot@securade.ai.")) # Display chat history st.empty() chat_history = st.session_state['chat_history'] for speaker, text in chat_history: st.markdown(f"**{speaker}:** {text}")