import gradio as gr from transformers import pipeline ner_example = [ """ My name is Superman, and I come from the planet Krypton """, ] get_entities = pipeline("ner", model="dslim/bert-base-NER") def merge_tokens(tokens): merged_tokens = [] for token in tokens: if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): # If current token continues the entity of the last one, merge them last_token = merged_tokens[-1] last_token['word'] += token['word'].replace('##', '') last_token['end'] = token['end'] last_token['score'] = (last_token['score'] + token['score']) / 2 else: # Otherwise, add the token to the list merged_tokens.append(token) return merged_tokens def ner(input): if not input: pass else: output = get_entities(input) merged_tokens = merge_tokens(output) return {"text": input, "entities": merged_tokens} interface_ner = gr.Interface(fn=ner, inputs=[gr.Textbox(label="Text to identify entities", lines=1)], outputs=[gr.HighlightedText(label="Text with entities")], examples=ner_example, title="Named Entity Recognition", description="Find entities in given text.", css="footer{display:none !important}", allow_flagging="never" )