from models.model_seeds import seeds, seed2str # ISSUES = ['Anxiety','Suicide'] ISSUES = [k for k,_ in seeds.items()] SOURCES = [ # "CTL_llama2", "CTL_llama3", # "CTL_mistral", 'OA_rolemodel', # 'OA_finetuned', ] SOURCES_LAB = {"OA_rolemodel":'OpenAI GPT4o', "OA_finetuned":'Finetuned OpenAI', # "CTL_llama2": "Llama 2", "CTL_llama3": "Llama 3", "CTL_mistral": "Mistral", } ENDPOINT_NAMES = { # "CTL_llama2": "texter_simulator", "CTL_llama3": { "name": "texter_simulator_llm", "model_type": "text-generation" }, # "CTL_llama3": { # "name": "databricks-meta-llama-3-1-70b-instruct", # "model_type": "text-generation" # }, # 'CTL_llama2': "llama2_convo_sim", # "CTL_mistral": "convo_sim_mistral", "CPC": { "name": "phase_classifier", "model_type": "classificator" }, "BadPractices": { "name": "training_adherence_bp", "model_type": "classificator" }, "training_adherence": { "name": "training_adherence", "model_type": "text-completion" }, } def source2label(source): return SOURCES_LAB[source] def issue2label(issue): return seed2str.get(issue, "GCT") ENVIRON = "prod" DB_SCHEMA = 'prod_db' if ENVIRON == 'prod' else 'test_db' DB_CONVOS = 'conversations' DB_COMPLETIONS = 'comparison_completions' DB_BATTLES = 'battles' DB_ERRORS = 'completion_errors' DB_CPC = "cpc_comparison" DB_BP = "bad_practices_comparison" DB_TA = "convo_scoring_comparison" MAX_MSG_COUNT = 60 WARN_MSG_COUT = int(MAX_MSG_COUNT*0.8)