import os import streamlit as st from streamlit.logger import get_logger from langchain.schema.messages import HumanMessage from utils.mongo_utils import get_db_client, update_convo from utils.app_utils import create_memory_add_initial_message, get_random_name, DEFAULT_NAMES_DF, are_models_alive from utils.memory_utils import clear_memory, push_convo2db from utils.chain_utils import get_chain, custom_chain_predict from app_config import ISSUES, SOURCES, source2label, issue2label, MAX_MSG_COUNT, WARN_MSG_COUT from models.ta_models.config import CPC_LBL_OPTS, cpc_label2str, BP_LAB2STR, BP_LBL_OPTS from models.ta_models.cpc_utils import cpc_push2db, modify_last_human_message from models.ta_models.bp_utils import bp_predict_message, bp_push2db logger = get_logger(__name__) temperature = 0.8 # username = "barb-chase" #"ivnban-ctl" st.set_page_config(page_title="Conversation Simulator") if "sent_messages" not in st.session_state: st.session_state['sent_messages'] = 0 if not are_models_alive(): st.switch_page("pages/model_loader.py") if "total_messages" not in st.session_state: st.session_state['total_messages'] = 0 if "issue" not in st.session_state: st.session_state['issue'] = ISSUES[0] if 'previous_source' not in st.session_state: st.session_state['previous_source'] = SOURCES[0] if 'db_client' not in st.session_state: st.session_state["db_client"] = get_db_client() if 'texter_name' not in st.session_state: st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF) logger.debug(f"texter name is {st.session_state['texter_name']}") if "last_phase" not in st.session_state: st.session_state["last_phase"] = CPC_LBL_OPTS[0] # st.session_state["sel_phase"] = CPC_LBL_OPTS[0] if "changed_cpc" not in st.session_state: st.session_state["changed_cpc"] = False if "changed_bp" not in st.session_state: st.session_state["changed_bp"] = False # st.session_state["sel_phase"] = st.session_state["last_phase"] memories = {'memory':{"issue": st.session_state['issue'], "source": st.session_state['previous_source']}} with st.sidebar: username = st.text_input("Username", value='Dani', max_chars=30) if 'counselor_name' not in st.session_state: st.session_state["counselor_name"] = username #get_random_name(names_df=DEFAULT_NAMES_DF) # temperature = st.slider("Temperature", 0., 1., value=0.8, step=0.1) issue = st.selectbox("Select a Scenario", ISSUES, index=ISSUES.index(st.session_state['issue']), format_func=issue2label, on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"} ) supported_languages = ['en', "es"] if issue == "Anxiety" else ['en'] language = st.selectbox("Select a Language", supported_languages, index=0, format_func=lambda x: "English" if x=="en" else "Spanish", on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"} ) source = st.selectbox("Select a source Model A", SOURCES, index=0, format_func=source2label, key="source" ) changed_source = any([ st.session_state['previous_source'] != source, st.session_state['issue'] != issue, st.session_state['counselor_name'] != username, ]) if changed_source: st.session_state["counselor_name"] = username st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF) logger.debug(f"texter name is {st.session_state['texter_name']}") st.session_state['previous_source'] = source st.session_state['issue'] = issue st.session_state['sent_messages'] = 0 st.session_state['total_messages'] = 0 create_memory_add_initial_message(memories, issue, language, changed_source=changed_source, counselor_name=st.session_state["counselor_name"], texter_name=st.session_state["texter_name"]) st.session_state['previous_source'] = source memoryA = st.session_state[list(memories.keys())[0]] # issue only without "." marker for model compatibility llm_chain, stopper = get_chain(issue, language, source, memoryA, temperature, texter_name=st.session_state["texter_name"]) st.title("💬 Simulator") st.session_state['total_messages'] = len(memoryA.chat_memory.messages) for msg in memoryA.buffer_as_messages: role = "user" if type(msg) == HumanMessage else "assistant" st.chat_message(role).write(msg.content) def sent_request_llm(llm_chain, prompt): st.session_state['sent_messages'] += 1 st.chat_message("user").write(prompt) responses = custom_chain_predict(llm_chain, prompt, stopper) for response in responses: st.chat_message("assistant").write(response) transcript = memoryA.load_memory_variables({})[memoryA.memory_key] update_convo(st.session_state["db_client"], st.session_state["convo_id"], transcript) # @st.dialog("Bad Practice Detected") # def confirm_bp(bp_prediction, prompt): # bps = [BP_LAB2STR[x['label']] for x in bp_prediction if x['score']] # st.markdown(f"The last message was considered :red[{' and '.join(bps)}]") # "Are you sure you want to send this message?" # newprompt = st.text_input("Change message to:") # "If you do not want to change leave textbox empty" # for bp in BP_LAB2STR.keys(): # _ = st.checkbox(f"Original Message was {BP_LAB2STR[bp]}", key=f"chkbx_{bp}", value=BP_LAB2STR[bp] in bps) # if st.button("Confirm"): # if newprompt is not None and newprompt != "": # prompt = newprompt # bp_push2db( # {bp:st.session_state[f"chkbx_{bp}"] for bp in BP_LAB2STR.keys()} # ) # sent_request_llm(llm_chain, prompt) # st.rerun() if prompt := st.chat_input(disabled=st.session_state['total_messages'] > MAX_MSG_COUNT - 4): #account for next interaction if 'convo_id' not in st.session_state: push_convo2db(memories, username, language) if st.session_state["sent_messages"] > 0: if st.session_state.changed_cpc: st.session_state["sel_phase"] = None st.session_state.changed_cpc = False else: cpc_push2db(True) if st.session_state.changed_bp: st.session_state["sel_bp"] = None st.session_state.changed_bp = False else: bp_push2db({x['label']:x['score'] for x in st.session_state['bp_prediction']}) st.session_state['context'] = llm_chain.memory.load_memory_variables({})[llm_chain.memory.memory_key] st.session_state['last_message'] = prompt st.session_state['bp_prediction'] = bp_predict_message(st.session_state['context'], prompt) if any([x['score'] for x in st.session_state['bp_prediction']]): for bp in st.session_state['bp_prediction']: if bp["score"]: st.toast(f"Detected {BP_LAB2STR[bp['label']]} in the last message!", icon=":material/warning:") sent_request_llm(llm_chain, prompt) # else: # sent_request_llm(llm_chain, prompt) with st.sidebar: if "convo_id" in st.session_state: st.write(f"Conversation ID is `{st.session_state['convo_id']}`") st.divider() st.markdown(f"### Total Sent Messages: :red[**{st.session_state['sent_messages']}**]") st.markdown(f"### Total Messages: :red[**{st.session_state['total_messages']}**]") # st.markdown() def on_change_cpc(): cpc_push2db(False) modify_last_human_message(memoryA, st.session_state['sel_phase']) st.session_state.changed_cpc = True def on_change_bp(): bp_push2db() st.session_state.changed_bp = True if st.session_state["sent_messages"] > 0: _ = st.selectbox(f"""Last Human Message was considered :blue[**{ cpc_label2str(st.session_state['last_phase']) }**]. If not please select from the following options""", CPC_LBL_OPTS, index=None, format_func=cpc_label2str, on_change=on_change_cpc, key="sel_phase", ) BPs = [BP_LAB2STR[x['label']] for x in st.session_state['bp_prediction'] if x['score']] selecttitle = f"""Last Human Message was considered :blue[**{ " and ".join(BPs) }**].""" if len(BPs) > 0 else "Last Human Message was NOT considered Bad Practice." _ = st.selectbox(selecttitle + " If not please select from the following options""", BP_LBL_OPTS, index=None, format_func=lambda x: x, on_change=on_change_bp, key="sel_bp" ) if st.button("Score Conversation"): st.switch_page("pages/training_adherence.py") st.session_state['total_messages'] = len(memoryA.chat_memory.messages) if st.session_state['total_messages'] >= MAX_MSG_COUNT: st.toast(f"Total of {MAX_MSG_COUNT} Messages reached. Conversation Ended", icon=":material/verified:") elif st.session_state['total_messages'] >= WARN_MSG_COUT: st.toast(f"The conversation will end at {MAX_MSG_COUNT} Total Messages ", icon=":material/warning:") if not are_models_alive(): st.switch_page("pages/model_loader.py")