from transformers import EncoderDecoderModel,GPT2LMHeadModel,BertTokenizer from datasets import load_dataset import gradio as gr import pandas as pd import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') Model = EncoderDecoderModel.from_pretrained('damilojohn/Bert2BertForTextDescrambling') def descramble(prompt): input = tokenizer(prompt,return_tensors='pt') input_id = input.input_ids attention_mask = input.attention_mask max_length = len(prompt.split(' ')) output = Model.generate(input_ids=input_id,attention_mask=attention_mask,) output = tokenizer.decode(output[0],skip_special_tokens=True) return gr.Textbox.update(value=output) def set_example(example): return gr.TextArea.update(value=example[0]) demo = gr.Blocks() with demo: gr.Markdown( ''' # A Text Descrambler 😎😎 Turn your Incoherent Sentences to Grammatically correct Sentences. This was built using transformers and Gradio ''') with gr.Row(): with gr.Column(): gr.Markdown( ''' Enter a meaningless sentence here ''') prompt = gr.TextArea( value = examples[0][0], placeholder = "Enter A Text to see it's correct form " ) example_prompts = gr.Dataset( components = [prompt], samples = examples) with gr.Column(): find_answer = gr.Button('Click here to generate your sentence 👀ðŸĪš').style(full_width=False) with gr.Column(): answer = gr.Textbox(label='Answer',placeholder = "Correct Form") with gr.Column(): gr.Markdown( ''' ## Still Under Construction 💀🎃âģ, anything you see take it like that ''') find_answer.click( fn=descramble, inputs=[prompt], outputs=[answer] ) example_prompts.click( fn=set_example, inputs=[example_prompts], outputs=example_prompts.components, ) demo.launch()