import streamlit as st
import pandas as pd
import plotly.express as px
import requests # Import the requests library
# Path to the data file relative to the app.py file
DATA_PATH = "https://huggingface.co/spaces/danielrosehill/Monetised-GHG-Emissions-Calculator/raw/main/calculator-app/data.csv"
INSTRUCTIONS_PATH = "https://huggingface.co/spaces/danielrosehill/Monetised-GHG-Emissions-Calculator/raw/main/calculator-app/instructions.md"
GITHUB_LINK = "https://github.com/danielrosehill/Emissions-Monetisation-Calculator"
def load_data():
try:
df = pd.read_csv(DATA_PATH)
return df
except FileNotFoundError:
st.error(
f"Error: Could not find the data file at {DATA_PATH}. Please ensure the file exists."
)
return None
def load_instructions():
try:
response = requests.get(INSTRUCTIONS_PATH) # Fetch the content of the URL
response.raise_for_status() # Raise an error for bad status codes
return response.text # return the text of the response
except requests.exceptions.RequestException as e:
return f"Error: Could not fetch instructions file: {e}"
def format_currency(value, display_unit):
if display_unit == "Millions":
formatted_value = f"${value / 1_000_000:.2f} MN"
elif display_unit == "Billions":
formatted_value = f"${value / 1_000_000_000:.2f} BN"
return formatted_value
def main():
st.set_page_config(layout="wide")
st.markdown("""
""", unsafe_allow_html=True)
st.title("GHG Emissions Monetization Calculator")
st.markdown(
"This tool explores the potential financial implications of proposed greenhouse gas emissions costs. It accompanies a repository on Github and Hugging Face that aggregates proposals for the social cost of carbon."
)
st.markdown(
"The social cost of carbon represents the economic damages associated with emitting one additional ton of carbon dioxide into the atmosphere."
)
st.markdown(
"Detailed notes and instructions about the use of this calculator can be found in the Instructions tab."
)
st.markdown(
"This calculator was developed by Daniel Rosehill in December 2024 (danielrosehill.com)."
)
# Load the data and instructions
df = load_data()
instructions = load_instructions()
if df is None:
return # Don't proceed if data can't be loaded
# Tabs for calculator, instructions and SCC proposals
tabs = st.tabs(["Calculator", "Instructions", "SCC Chart", "SCC Details", "Data"])
with tabs[0]: # Calculator tab
with st.container():
st.markdown("### Input your emissions and proposal of interest")
left, right = st.columns(2)
with left:
st.subheader("Input Values")
st.markdown("Enter your company's greenhouse gas emissions:")
scope1_emissions = st.number_input("Scope 1 Emissions", value=0.0)
st.markdown("*(Direct emissions from owned or controlled sources)*")
scope2_emissions = st.number_input("Scope 2 Emissions", value=0.0)
st.markdown("*(Indirect emissions from the generation of purchased energy)*")
scope3_emissions = st.number_input("Scope 3 Emissions", value=0.0)
st.markdown("*(All other indirect emissions that occur in a company's value chain)*")
unit_of_reporting = st.selectbox("Unit of Reporting", ["TCO2E", "MTCO2E"])
proposal_names = df['proposal_with_date'].tolist()
selected_proposal = st.selectbox("Social cost of carbon proposal", proposal_names)
calculate_button = st.button("Calculate Monetized Emissions")
with right:
st.subheader("Calculated Values")
if calculate_button:
# Calculated emissions
scope1_2_emissions = scope1_emissions + scope2_emissions
all_scopes_emissions = (
scope1_emissions + scope2_emissions + scope3_emissions
)
st.markdown(
f"Scope 1 and 2 Emissions: {scope1_2_emissions:.2f} {unit_of_reporting}"
)
st.markdown(
f"All Scopes Emissions: {all_scopes_emissions:.2f} {unit_of_reporting}"
)
# Find the value in USD per ton
selected_row = df[df['proposal_with_date'] == selected_proposal].iloc[0]
multiplier = selected_row['usd_proposed_value']
st.subheader("Monetized Emissions")
display_unit = st.radio("Display units", ["Millions", "Billions"])
if unit_of_reporting == "MTCO2E":
scope1_emissions = scope1_emissions * 1_000_000
scope2_emissions = scope2_emissions * 1_000_000
scope3_emissions = scope3_emissions * 1_000_000
all_scopes_emissions = all_scopes_emissions * 1_000_000
# Monetization calculations
monetized_scope1 = scope1_emissions * multiplier
monetized_scope2 = scope2_emissions * multiplier
monetized_scope3 = scope3_emissions * multiplier
monetized_all_scopes = all_scopes_emissions * multiplier
st.markdown(f"Scope 1: {format_currency(monetized_scope1, display_unit)}")
st.markdown(f"Scope 2: {format_currency(monetized_scope2, display_unit)}")
st.markdown(f"Scope 3: {format_currency(monetized_scope3, display_unit)}")
st.markdown(
f"All Scopes: {format_currency(monetized_all_scopes, display_unit)}"
)
with tabs[1]: # Instructions tab
st.markdown(instructions)
with tabs[2]: # SCC Chart tab
st.subheader("Social Cost of Carbon Proposals")
# Convert the 'date' column to datetime objects for proper sorting
df['date'] = pd.to_datetime(df['date'])
# Sort by value
df_sorted = df.sort_values(by='usd_proposed_value', ascending=True)
# Create horizontal bar chart
bar_fig = px.bar(
df_sorted,
x="usd_proposed_value",
y="proposal_with_date",
title="Social Cost of Carbon Proposals",
labels={
"usd_proposed_value": "USD Proposed Value",
"proposal_with_date": "Proposal",
},
orientation='h', # Set orientation to horizontal
hover_data={
"usd_proposed_value": True,
}
)
bar_fig.update_traces(texttemplate='%{x:.2f}', textposition='outside')
st.plotly_chart(bar_fig)
# Organization filter
organizations = df['organization_name'].unique().tolist()
selected_org = st.selectbox("Filter by organization", ["All"] + organizations)
# Filter data
if selected_org != "All":
filtered_df = df[df['organization_name'] == selected_org]
else:
filtered_df = df
# Sort the data by date before creating the line chart
filtered_df = filtered_df.sort_values(by='date')
# Create line chart with data points and custom hover text
show_points = st.checkbox("Display Data Points", value=True)
line_fig = px.line(
filtered_df,
x="date",
y="usd_proposed_value",
title="Trend of Social Cost of Carbon Proposals Over Time",
labels={
"usd_proposed_value": "USD Proposed Value",
"date": "Date",
},
hover_data={
"usd_proposed_value": True,
"proposal_with_date": True,
"organization_name": True,
},
)
line_fig.update_traces(
mode="lines+markers" if show_points else "lines",
hovertemplate="USD Value: %{y:.2f}
Proposal: %{customdata[0]}
Organization: %{customdata[1]}",
text=filtered_df["proposal_with_date"],
marker=dict(size=6),
customdata=filtered_df[["proposal_with_date","organization_name"]]
)
st.plotly_chart(line_fig)
with tabs[3]: # SCC Details tab
st.subheader("Social Cost of Carbon Proposal Details")
proposal_names = df["proposal_with_date"].tolist()
selected_proposal = st.selectbox("Select a proposal", proposal_names)
if selected_proposal:
selected_row = df[df["proposal_with_date"] == selected_proposal].iloc[0]
# Prepare data for the table
col1, col2 = st.columns(2)
with col1:
st.markdown(" **Organization Name:**")
st.markdown(" **Organization Description:**")
st.markdown(" **Date:**")
st.markdown(" **Country:**")
st.markdown(" **ISO3:**")
st.markdown(" **ISO2:**")
st.markdown(" **HDI Value:**")
st.markdown(" **HDI Category:**")
st.markdown(" **Details:**")
with col2:
st.markdown(selected_row["organization_name"])
st.markdown(selected_row["organization_description"])
st.markdown(selected_row["date"].strftime('%Y-%m-%d'))
st.markdown(selected_row["country"])
st.markdown(selected_row["iso3"])
st.markdown(selected_row["iso2"])
st.markdown(str(selected_row["hdi_value"]))
st.markdown(selected_row["hdi_category"])
st.markdown(selected_row["details"])
col3, col4 = st.columns(2)
with col3:
st.markdown(" **Original Proposed Value:**")
st.markdown(" **Average Value:**")
st.markdown(" **USD Proposed Value:**")
st.markdown(" **USD Proposed Value (Empty CO2e):**")
st.markdown(" **USD Conversion Date:**")
st.markdown(" **Value Units:**")
st.markdown(" **Environmental Units:**")
st.markdown(" **Methodologies Used:**")
st.markdown(" **Calculation Scope:**")
st.markdown(" **Is Range:**")
with col4:
st.markdown(f"{selected_row['original_proposed_value']} {selected_row['original_currency_name']}")
st.markdown(str(selected_row["average_value"]))
st.markdown(str(selected_row["usd_proposed_value"]))
st.markdown(str(selected_row['use_proposed_value_mtco2e']))
st.markdown(str(selected_row["usd_conversion_date"]))
st.markdown(selected_row["value_units"])
st.markdown(selected_row["environmental_units"])
st.markdown(selected_row["methodologies_used"])
st.markdown(selected_row["calculation_scope"])
st.markdown(str(selected_row["is_range"]))
with tabs[4]: # Data Tab
st.subheader("Data")
st.dataframe(df)
st.markdown("#### Download Data")
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(df)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='scc_data.csv',
mime='text/csv',
)
st.markdown(f'', unsafe_allow_html=True)
if __name__ == "__main__":
main()