import gradio as gr import json from datetime import datetime from theme import TufteInspired from transformers import pipeline # Load the model model_id = "meta-llama/Meta-Llama-3-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, add_special_tokens=True) pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="cuda", ) # Placeholder LLM function def generate_blurb(): # This is where you'd call your LLM model return pipeline("Write a blurb for a made-up book")[0]["generated_text"] # Function to log blurb and vote def log_blurb_and_vote(blurb, vote): log_entry = { "timestamp": datetime.now().isoformat(), "blurb": blurb, "vote": vote } with open("blurb_log.jsonl", "a") as f: f.write(json.dumps(log_entry) + "\n") return f"Logged: {vote}" # Create custom theme tufte_theme = TufteInspired() # Create Gradio interface with gr.Blocks(theme=tufte_theme) as demo: gr.Markdown("