import os import io import random import requests from PIL import Image from dataset_viber import AnnotatorInterFace HF_TOKEN = os.environ["HF_TOKEN"] HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} DATASET_SERVER_URL = "https://datasets-server.huggingface.co" DATASET_NAME = "poloclub%2Fdiffusiondb&config=2m_random_1k&split=train" MODEL_URL = ( "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" ) def retrieve_sample(idx): api_url = f"{DATASET_SERVER_URL}/rows?dataset={DATASET_NAME}&offset={idx}&length=1" response = requests.get(api_url, headers=HEADERS) data = response.json() img_url = data["rows"][0]["row"]["image"]["src"] prompt = data["rows"][0]["row"]["prompt"] return img_url, prompt def get_rows(): api_url = f"{DATASET_SERVER_URL}/size?dataset={DATASET_NAME}" response = requests.get(api_url, headers=HEADERS) num_rows = response.json()["size"]["config"]["num_rows"] return num_rows def generate_response(prompt): payload = { "inputs": prompt, } response = requests.post(MODEL_URL, headers=HEADERS, json=payload) image = Image.open(io.BytesIO(response.content)) return image def next_input(_prompt, _completion_a, _completion_b): random_idx = random.randint(0, get_rows()) - 1 img_url, prompt = retrieve_sample(random_idx) generated_image = generate_response(prompt) return (prompt, img_url, generated_image) if __name__ == "__main__": interface = AnnotatorInterFace.for_image_generation_preference( fn=next_input, dataset_name=None, ) interface.launch()