import streamlit as st import pandas as pd from transformers import pipeline st.set_page_config(page_title="Zero-shot classification from tabular data", page_icon=None, layout="wide", initial_sidebar_state="auto", menu_items=None) classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli") st.title("Zero-shot classification from tabular data") st.text("Upload a table and perform zero-shot classification on a set of custom labels") data = st.file_uploader("Upload Excel file:") labels = st.text_input("Enter comma-separated labels:") if st.button("Calculate labels"): try: labels_list = labels.split(",") table = pd.read_excel(data) table = table.loc[table["text"].apply(len) > 10].reset_index(drop=True).head(50) prog_bar = st.progress(0) preds = [] for i in range(len(table)): preds.append(classifier(table.loc[i, "text"], labels)["labels"][0]) prog_bar.progress((i + 1)/len(table)) table["label"] = preds st.table(table[["text", "label"]]) except: st.error("File load didn't work. Make sure you upload a file containing a `text` column and a set of comma-separated labels is provided")