{
"cells": [
{
"cell_type": "markdown",
"id": "56950450",
"metadata": {},
"source": [
"# Token Benchmark Example Analysis\n",
"The following is an example of the analysis that can be done on individual responses that are saved when running `token_benchmark_ray.py` with the flag `--results-dir` which enables the saving of all responses."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "dacfe98a-e81b-4089-9506-97a652993b5b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "17f7abe9-ed9e-466c-b034-577489aaf98b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" error_code \n",
" error_msg \n",
" inter_token_latency_s \n",
" ttft_s \n",
" end_to_end_latency_s \n",
" request_output_throughput_token_per_s \n",
" number_total_tokens \n",
" number_output_tokens \n",
" number_input_tokens \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" NaN \n",
" \n",
" [0.5549881670012831, 0.0009654169989510001, 0.... \n",
" 0.554988 \n",
" 1.610734 \n",
" 44.079272 \n",
" 706 \n",
" 71 \n",
" 635 \n",
" \n",
" \n",
" 1 \n",
" NaN \n",
" \n",
" [0.6019128750049271, 0.007011749999946, 0.0144... \n",
" 0.601913 \n",
" 1.725729 \n",
" 44.039357 \n",
" 730 \n",
" 76 \n",
" 654 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" error_code error_msg inter_token_latency_s \\\n",
"0 NaN [0.5549881670012831, 0.0009654169989510001, 0.... \n",
"1 NaN [0.6019128750049271, 0.007011749999946, 0.0144... \n",
"\n",
" ttft_s end_to_end_latency_s request_output_throughput_token_per_s \\\n",
"0 0.554988 1.610734 44.079272 \n",
"1 0.601913 1.725729 44.039357 \n",
"\n",
" number_total_tokens number_output_tokens number_input_tokens \n",
"0 706 71 635 \n",
"1 730 76 654 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# path to the individual responses json file\n",
"df = pd.read_json('/home/ray/default/llmperf/result_outputs/550_150_individual_responses.json')\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "565a59e4",
"metadata": {},
"outputs": [],
"source": [
"valid_df = df[(df[\"error_code\"] != \"\")]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "102894bc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" error_code \n",
" error_msg \n",
" inter_token_latency_s \n",
" ttft_s \n",
" end_to_end_latency_s \n",
" request_output_throughput_token_per_s \n",
" number_total_tokens \n",
" number_output_tokens \n",
" number_input_tokens \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" NaN \n",
" \n",
" [0.5549881670012831, 0.0009654169989510001, 0.... \n",
" 0.554988 \n",
" 1.610734 \n",
" 44.079272 \n",
" 706 \n",
" 71 \n",
" 635 \n",
" \n",
" \n",
" 1 \n",
" NaN \n",
" \n",
" [0.6019128750049271, 0.007011749999946, 0.0144... \n",
" 0.601913 \n",
" 1.725729 \n",
" 44.039357 \n",
" 730 \n",
" 76 \n",
" 654 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" error_code error_msg inter_token_latency_s \\\n",
"0 NaN [0.5549881670012831, 0.0009654169989510001, 0.... \n",
"1 NaN [0.6019128750049271, 0.007011749999946, 0.0144... \n",
"\n",
" ttft_s end_to_end_latency_s request_output_throughput_token_per_s \\\n",
"0 0.554988 1.610734 44.079272 \n",
"1 0.601913 1.725729 44.039357 \n",
"\n",
" number_total_tokens number_output_tokens number_input_tokens \n",
"0 706 71 635 \n",
"1 730 76 654 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"valid_df"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c7519fc9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean number of input tokens: 644.5. Mean number of output tokens: 73.5\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+u0lEQVR4nO3deVgW9f7/8dcNsqrgAgIqgop7uYSKYIkVbp1TVp4yWzBOmpWmRllRuWSLmll2mSeXcknLXKqv+tP0JLlUmpZmaZnghkuCogKiBgmf3x9d3MdbFsFYnefjuua6vD8z85nPe4aBlzNz37fNGGMEAABgIU4VPQAAAIDyRgACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACKsCGDRtks9m0bNmyih5KsaSkpOhf//qX6tatK5vNpqlTp1b0kCq1cePGyWazKTU1taKHAqAQBCBcs+bNmyebzSZ3d3cdO3Ys3/zu3bvruuuuq4CRVT1PPfWU1q5dq7i4OC1YsEC9e/cudFmbzaZhw4aV4+iK9vHHHxcrsOWFlitN3bt3L/MxX+uKs59LMm3YsEGHDh0qdH6XLl04vsinWkUPAChrWVlZmjhxoqZNm1bRQ6myvvrqK/Xt21fPPPNMRQ+lxD7++GPt3r1bI0eOLHK5u+++WyEhIfbXmZmZevzxx3XXXXfp7rvvtrf7+fmV1VAtY8GCBQ6vP/zwQ3355Zf52nNycuTs7HzF5Vq1aqULFy5IkgYMGKDbbrvNYb6vr68CAgI4vnBAAMI1r3379po9e7bi4uJUv379ih5OuTp37pyqV6/+t/s5ceKEatWq9fcHVIm1bdtWbdu2tb9OTU3V448/rrZt2+rBBx+swJFdey7fn999952+/PLLK+7nopY7dOiQJOmGG24otB+OLy7FLTBc81544QXl5ORo4sSJRS6Xdwl93rx5+ebZbDaNGzfO/jrvcnpCQoIefPBBeXt7y9fXV6NHj5YxRkeOHFHfvn3l5eUlf39/TZkypcBt5uTk6IUXXpC/v7+qV6+uO+64Q0eOHMm33NatW9W7d295e3vL09NTkZGR+vbbbx2WyRvTr7/+qvvvv1+1a9fWjTfeWGTNBw4c0D333KM6derI09NTXbp00apVq+zz824jGmM0ffp0+22Cksh73mnJkiV67bXX1LBhQ7m7u+vWW2/Vvn37HJbNuy25fft2RUREyMPDQ40bN9aMGTMclssbV94fvcu3tWHDBnt/q1atUlJSkn3swcHBJRr/5b766ivddNNNql69umrVqqW+fftqz549V1wvKSlJISEhuu6665SSkiJJSktL08iRIxUYGCg3NzeFhIRo0qRJys3Nta+X93P55ptvatasWWratKnc3NzUqVMnff/99w7bSE5OVkxMjBo2bCg3NzcFBASob9+++fbTpd58803ZbDYlJSXlmxcXFydXV1edOXNGkpSYmKh+/frJ399f7u7uatiwoe677z6lp6cXZ9cBlQpXgHDNa9y4saKjozV79mw9//zzpXoVqH///mrVqpUmTpyoVatW6dVXX1WdOnU0c+ZM3XLLLZo0aZI++ugjPfPMM+rUqZO6devmsP5rr70mm82m5557TidOnNDUqVMVFRWlnTt3ysPDQ9Jff3D79Omj0NBQjR07Vk5OTpo7d65uueUWff311+rcubNDn/fcc4+aNWum119/XcaYQseekpKiiIgInT9/XsOHD1fdunU1f/583XHHHVq2bJnuuusudevWTQsWLNBDDz2kHj16KDo6+qr31cSJE+Xk5KRnnnlG6enpeuONN/TAAw9o69atDsudOXNGt912m+69914NGDBAS5Ys0eOPPy5XV1f9+9//LtE2X3zxRaWnp+vo0aN6++23JUk1atS46hrWrVunPn36qEmTJho3bpwuXLigadOmqWvXrtqxY0eh4Wr//v265ZZbVKdOHX355Zfy8fHR+fPnFRkZqWPHjmnIkCFq1KiRNm/erLi4OB0/fjzfc0sff/yxzp49qyFDhshms+mNN97Q3XffrQMHDsjFxUWS1K9fP/3yyy968sknFRwcrBMnTujLL7/U4cOHCx3bvffeq2effVZLlizRqFGjHOYtWbJEPXv2VO3atZWdna1evXopKytLTz75pPz9/XXs2DH9v//3/5SWliZvb++r3q+l6fz58/kePvf29rbvI8DOANeouXPnGknm+++/N/v37zfVqlUzw4cPt8+PjIw0bdq0sb8+ePCgkWTmzp2bry9JZuzYsfbXY8eONZLMo48+am+7ePGiadiwobHZbGbixIn29jNnzhgPDw8zcOBAe9v69euNJNOgQQOTkZFhb1+yZImRZN555x1jjDG5ubmmWbNmplevXiY3N9e+3Pnz503jxo1Njx498o1pwIABxdo/I0eONJLM119/bW87e/asady4sQkODjY5OTkO9Q8dOrRY/V6+bF6trVq1MllZWfb2d955x0gyu3btsrdFRkYaSWbKlCn2tqysLNO+fXtTr149k52dbYz537E9ePCgw7bztrV+/Xp72z/+8Q8TFBRUrLFf6uTJk/mOe944Tp06ZW/76aefjJOTk4mOjra35R2LkydPmj179pj69eubTp06mdOnT9uXeeWVV0z16tVNQkKCw3aff/554+zsbA4fPmyM+d/PZd26dR3WX758uZFkVq5caYz56+dMkpk8eXKJaw0PDzehoaEObdu2bTOSzIcffmiMMebHH380kszSpUtL3P+VDB061BTnz1FRy+Xtp4KmS38e8hR0fGEt3AKDJTRp0kQPPfSQZs2apePHj5dav4MGDbL/29nZWR07dpQxRo888oi9vVatWmrRooUOHDiQb/3o6GjVrFnT/vpf//qXAgICtHr1aknSzp07lZiYqPvvv1+nTp1SamqqUlNTde7cOd16663atGmTw+0SSXrssceKNfbVq1erc+fODrfJatSooUcffVSHDh3Sr7/+WrydUEwxMTFydXW1v77pppskKd9+qVatmoYMGWJ/7erqqiFDhujEiRPavn17qY6pJI4fP66dO3fq4YcfVp06deztbdu2VY8ePezH7FK7d+9WZGSkgoODtW7dOtWuXds+b+nSpbrppptUu3Zt+3FNTU1VVFSUcnJytGnTJoe++vfv77D+5fvPw8NDrq6u2rBhg/2WVXH1799f27dv1/79++1tixcvlpubm/r27StJ9is8a9eu1fnz50vUf3l69NFH9eWXXzpM7dq1q+hhoRIiAMEyXnrpJV28ePGKzwKVRKNGjRxee3t7y93dXT4+PvnaC/qj1KxZM4fXNptNISEh9mc2EhMTJUkDBw6Ur6+vw/T+++8rKysr3/MXjRs3LtbYk5KS1KJFi3ztrVq1ss8vTZfvq7w/5pfvl/r16+d7cLt58+aSVOSzLGUtb38Uts/ygumlbr/9dtWsWVNr166Vl5eXw7zExEStWbMm33GNioqS9NeD55e60v5zc3PTpEmT9MUXX8jPz0/dunXTG2+8oeTk5CvWds8998jJyUmLFy+WJBljtHTpUvXp08c+7saNGys2Nlbvv/++fHx81KtXL02fPr3SPf/TrFkzRUVFOUyXBkcgDwEIltGkSRM9+OCDhV4FKuzh3pycnEL7vPQtukW1SSryeZzC5F3dmTx5cr7/1eZNlz/TkvfsUGVTmvvlao5VRejXr5/279+vjz76KN+83Nxc9ejRo9Dj2q9fP4fli7P/Ro4cqYSEBE2YMEHu7u4aPXq0WrVqpR9//LHIcdavX1833XSTlixZIumvd1sdPnxY/fv3d1huypQp+vnnn/XCCy/owoULGj58uNq0aaOjR48Wa38AlQkPQcNSXnrpJS1cuFCTJk3KNy/vf4lpaWkO7aV9JeRSeVd48hhjtG/fPvvbdZs2bSpJ8vLysl8ZKC1BQUHau3dvvvbffvvNPr8i/P777/nevp+QkCBJ9gd5S3KsSvqutcLk7Y/C9pmPj0++K1eTJ09WtWrV9MQTT6hmzZq6//777fOaNm2qzMzMUj+uTZs21dNPP62nn35aiYmJat++vaZMmaKFCxcWuV7//v31xBNPaO/evVq8eLE8PT11++2351vu+uuv1/XXX6+XXnpJmzdvVteuXTVjxgy9+uqrpVoHUNa4AgRLadq0qR588EHNnDkz360BLy8v+fj45Hv24j//+U+ZjefDDz/U2bNn7a+XLVum48ePq0+fPpKk0NBQNW3aVG+++aYyMzPzrX/y5Mmr3vZtt92mbdu2acuWLfa2c+fOadasWQoODlbr1q2vuu+/4+LFi5o5c6b9dXZ2tmbOnClfX1+FhoZK+l8wvPRY5eTkaNasWfn6q169eqncpgkICFD79u01f/58h+C1e/du/fe//8334XvSX+Fr1qxZ+te//qWBAwdqxYoV9nn33nuvtmzZorVr1+ZbLy0tTRcvXizR+M6fP68//vjDoa1p06aqWbOmsrKyrrh+v3795OzsrEWLFmnp0qX65z//6RDoMjIy8o3p+uuvl5OTk0P/hw8ftodooDLjChAs58UXX9SCBQu0d+9etWnTxmHeoEGDNHHiRA0aNEgdO3bUpk2b7FcfykKdOnV04403KiYmRikpKZo6dapCQkI0ePBgSZKTk5Pef/999enTR23atFFMTIwaNGigY8eOaf369fLy8tLKlSuvatvPP/+8Fi1apD59+mj48OGqU6eO5s+fr4MHD+rTTz+Vk1PF/P+ofv36mjRpkg4dOqTmzZtr8eLF2rlzp2bNmmV/K3ObNm3UpUsXxcXF6fTp06pTp44++eSTAkNDaGioFi9erNjYWHXq1Ek1atQo8MpGcUyePFl9+vRReHi4HnnkEfvb4L29vR0+J+pSTk5OWrhwoe68807de++9Wr16tW655RaNGjVKK1as0D//+U89/PDDCg0N1blz57Rr1y4tW7ZMhw4dyvcsWVESEhJ066236t5771Xr1q1VrVo1ff7550pJSdF99913xfXr1aunm2++WW+99ZbOnj2b7/bXV199pWHDhumee+5R8+bNdfHiRS1YsEDOzs4Ot+uio6O1cePGq7q1CZQnAhAsJyQkRA8++KDmz5+fb96YMWN08uRJLVu2TEuWLFGfPn30xRdfqF69emUylhdeeEE///yzJkyYoLNnz+rWW2/Vf/7zH3l6etqX6d69u7Zs2aJXXnlF7777rjIzM+Xv76+wsDCHd0uVlJ+fnzZv3qznnntO06ZN0x9//KG2bdtq5cqV+sc//lEa5V2V2rVra/78+XryySc1e/Zs+fn56d1337WHwjwfffSRhgwZookTJ6pWrVp65JFHdPPNN6tHjx4Oyz3xxBPauXOn5s6dq7fffltBQUFXHYCioqK0Zs0ajR07VmPGjJGLi4siIyM1adKkIh8+d3Fx0bJly9SnTx/17dtX69atU1hYmDZu3KjXX39dS5cu1YcffigvLy81b95cL7/8cok/VycwMFADBgxQfHy8FixYoGrVqqlly5ZasmRJvueJCtO/f3+tW7dONWvWzHdFq127durVq5dWrlypY8eOydPTU+3atdMXX3yhLl26lGisQGVgM8R0AJVE9+7dlZqaqt27d1f0UABc43gGCAAAWA4BCAAAWA4BCAAAWA7PAAEAAMvhChAAALAcAhAAALAcPgeoALm5ufr9999Vs2bNUvsYfQAAULaMMTp79qzq169/xQ9zJQAV4Pfff1dgYGBFDwMAAFyFI0eOqGHDhkUuQwAqQM2aNSX9tQO9vLwqeDQAAKA4MjIyFBgYaP87XhQCUAHybnt5eXkRgAAAqGKK8/gKD0EDAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADL4aswAABAuTpwMlNJp88ruG51NfapXiFjIAABAIBykXY+W8MX7dSmxJP2tm7NfDVtQAd5e7qU61i4BQYAAMrF8EU79e2+VIe2b/el6slFP5b7WAhAAACgzB04malNiSeVY4xDe44x2pR4UgdTz5XreAhAAACgzCWdPl/k/EOnCEAAAOAaE1THs8j5wXXL92FoAhAAAChzTXxrqFszXznbbA7tzjabujXzLfd3gxGAAABAuZg2oIO6hvg4tHUN8dG0AR3KfSy8DR4AAJQLb08XffhIZx1MPadDp87xOUAAAMA6GvtUXPDJwy0wAABgOQQgAABgOQQgAABgOZUiAE2fPl3BwcFyd3dXWFiYtm3bVuTyaWlpGjp0qAICAuTm5qbmzZtr9erVf6tPAABgHRUegBYvXqzY2FiNHTtWO3bsULt27dSrVy+dOHGiwOWzs7PVo0cPHTp0SMuWLdPevXs1e/ZsNWjQ4Kr7BAAA1mIz5rIv5ShnYWFh6tSpk959911JUm5urgIDA/Xkk0/q+eefz7f8jBkzNHnyZP32229ycSn4m2NL2uflMjIy5O3trfT0dHl5ef2N6gAAQHkpyd/vCr0ClJ2dre3btysqKsre5uTkpKioKG3ZsqXAdVasWKHw8HANHTpUfn5+uu666/T6668rJyfnqvvMyspSRkaGwwQAAK5dFRqAUlNTlZOTIz8/P4d2Pz8/JScnF7jOgQMHtGzZMuXk5Gj16tUaPXq0pkyZoldfffWq+5wwYYK8vb3tU2BgYClUBwAAKqsKfwaopHJzc1WvXj3NmjVLoaGh6t+/v1588UXNmDHjqvuMi4tTenq6fTpy5EgpjhgAAFQ2FfpJ0D4+PnJ2dlZKSopDe0pKivz9/QtcJyAgQC4uLnJ2dra3tWrVSsnJycrOzr6qPt3c3OTm5vY3qwEAAFVFhV4BcnV1VWhoqOLj4+1tubm5io+PV3h4eIHrdO3aVfv27VNubq69LSEhQQEBAXJ1db2qPgEAgLVU+C2w2NhYzZ49W/Pnz9eePXv0+OOP69y5c4qJiZEkRUdHKy4uzr78448/rtOnT2vEiBFKSEjQqlWr9Prrr2vo0KHF7hMAAFhbhX8Zav/+/XXy5EmNGTNGycnJat++vdasWWN/iPnw4cNycvpfTgsMDNTatWv11FNPqW3btmrQoIFGjBih5557rth9AgAAa6vwzwGqjPgcIAAAqp4q8zlAAAAAFYEABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALKdSBKDp06crODhY7u7uCgsL07Zt2wpddt68ebLZbA6Tu7u7wzIpKSl6+OGHVb9+fXl6eqp3795KTEws6zIAAEAVUeEBaPHixYqNjdXYsWO1Y8cOtWvXTr169dKJEycKXcfLy0vHjx+3T0lJSfZ5xhjdeeedOnDggJYvX64ff/xRQUFBioqK0rlz58qjJAAAUMlVeAB66623NHjwYMXExKh169aaMWOGPD09NWfOnELXsdls8vf3t09+fn72eYmJifruu+/03nvvqVOnTmrRooXee+89XbhwQYsWLSqPkgAAQCVXoQEoOztb27dvV1RUlL3NyclJUVFR2rJlS6HrZWZmKigoSIGBgerbt69++eUX+7ysrCxJcrgt5uTkJDc3N33zzTcF9peVlaWMjAyHCQAAXLsqNAClpqYqJyfH4QqOJPn5+Sk5ObnAdVq0aKE5c+Zo+fLlWrhwoXJzcxUREaGjR49Kklq2bKlGjRopLi5OZ86cUXZ2tiZNmqSjR4/q+PHjBfY5YcIEeXt726fAwMDSLRQAAFQqFX4LrKTCw8MVHR2t9u3bKzIyUp999pl8fX01c+ZMSZKLi4s+++wzJSQkqE6dOvL09NT69evVp08fOTkVXG5cXJzS09Pt05EjR8qzJAAAUM6qVeTGfXx85OzsrJSUFIf2lJQU+fv7F6sPFxcXdejQQfv27bO3hYaGaufOnUpPT1d2drZ8fX0VFhamjh07FtiHm5ub3Nzcrr4QAABQpVToFSBXV1eFhoYqPj7e3pabm6v4+HiFh4cXq4+cnBzt2rVLAQEB+eZ5e3vL19dXiYmJ+uGHH9S3b99SGzsAAKi6KvQKkCTFxsZq4MCB6tixozp37qypU6fq3LlziomJkSRFR0erQYMGmjBhgiRp/Pjx6tKli0JCQpSWlqbJkycrKSlJgwYNsve5dOlS+fr6qlGjRtq1a5dGjBihO++8Uz179qyQGgEAQOVS4QGof//+OnnypMaMGaPk5GS1b99ea9assT8YffjwYYdnd86cOaPBgwcrOTlZtWvXVmhoqDZv3qzWrVvblzl+/LhiY2OVkpKigIAARUdHa/To0eVeGwAAqJxsxhhT0YOobDIyMuTt7a309HR5eXlV9HAAAEAxlOTvd5V7FxgAAMDfRQACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWc1UBaMeOHdq1a5f99fLly3XnnXfqhRdeUHZ2don7mz59uoKDg+Xu7q6wsDBt27at0GXnzZsnm83mMLm7uzssk5mZqWHDhqlhw4by8PBQ69atNWPGjBKPCwAAXJuuKgANGTJECQkJkqQDBw7ovvvuk6enp5YuXapnn322RH0tXrxYsbGxGjt2rHbs2KF27dqpV69eOnHiRKHreHl56fjx4/YpKSnJYX5sbKzWrFmjhQsXas+ePRo5cqSGDRumFStWlLxYAABwzbmqAJSQkKD27dtLkpYuXapu3brp448/1rx58/Tpp5+WqK+33npLgwcPVkxMjP1Kjaenp+bMmVPoOjabTf7+/vbJz8/PYf7mzZs1cOBAde/eXcHBwXr00UfVrl27Iq8sAQAA67iqAGSMUW5uriRp3bp1uu222yRJgYGBSk1NLXY/2dnZ2r59u6Kiov43ICcnRUVFacuWLYWul5mZqaCgIAUGBqpv37765ZdfHOZHRERoxYoVOnbsmIwxWr9+vRISEtSzZ88C+8vKylJGRobDBAAArl1XFYA6duyoV199VQsWLNDGjRv1j3/8Q5J08ODBfFdjipKamqqcnJx86/j5+Sk5ObnAdVq0aKE5c+Zo+fLlWrhwoXJzcxUREaGjR4/al5k2bZpat26thg0bytXVVb1799b06dPVrVu3AvucMGGCvL297VNgYGCxawAAAFXPVQWgqVOnaseOHRo2bJhefPFFhYSESJKWLVumiIiIUh3g5cLDwxUdHa327dsrMjJSn332mXx9fTVz5kz7MtOmTdN3332nFStWaPv27ZoyZYqGDh2qdevWFdhnXFyc0tPT7dORI0fKtAYAAFCxql3NSm3btnV4F1ieyZMny9nZ2f560aJFuuOOO1S9evUC+/Hx8ZGzs7NSUlIc2lNSUuTv71+ssbi4uKhDhw7at2+fJOnChQt64YUX9Pnnn9uvTLVt21Y7d+7Um2++6XC7LY+bm5vc3NyKtT0AAFD1lernALm7u8vFxcX+esiQIfnCzaVcXV0VGhqq+Ph4e1tubq7i4+MVHh5erG3m5ORo165dCggIkCT9+eef+vPPP+Xk5Fias7Oz/bklAABgbVd1Bai4jDFXXCY2NlYDBw5Ux44d1blzZ02dOlXnzp1TTEyMJCk6OloNGjTQhAkTJEnjx49Xly5dFBISorS0NE2ePFlJSUkaNGiQpL/eIh8ZGalRo0bJw8NDQUFB2rhxoz788EO99dZbZVcsAACoMso0ABVH//79dfLkSY0ZM0bJyclq37691qxZY38w+vDhww5Xc86cOaPBgwcrOTlZtWvXVmhoqDZv3qzWrVvbl/nkk08UFxenBx54QKdPn1ZQUJBee+01PfbYY+VeHwAAqHxspjiXaa5SzZo19dNPP6lJkyZltYkykZGRIW9vb6Wnp8vLy6uihwMAAIqhJH+/+S4wAABgOQQgAABgOWUagIKCghzeFQYAAFAZXFUAatKkiU6dOpWvPS0tzeF5n927d/OpygAAoNK5qgB06NAh5eTk5GvPysrSsWPH/vagAAAAylKJ3ga/YsUK+7/Xrl0rb29v++ucnBzFx8crODi41AYHAABQFkoUgO688077vwcOHOgwz8XFRcHBwZoyZUqpDAwAAKCsFDsA/fzzz/rzzz/l7Oysxo0b6/vvv5ePj09Zjg0AAKBMFPsZoA4dOuj06dOSJJvNJpvNVmaDAgAAKEvFDkC1atXSgQMHJElJSUl8sSgAAKiyin0LrF+/foqMjLR/63rHjh3l7Oxc4LJ5QQkAAKAyKnYAmjVrlu6++27t27dPw4cP1+DBg1WzZs2yHBsAAECZKNG7wHr37i1J2r59u0aMGEEAAgAAVdJVfRBiYQ9Anzt3Tv/+97//1oAAAADK2lUFoPnz5+vChQv52i9cuKAPP/zwbw8KAACgLJXoFlhGRoaMMTLG6OzZs3J3d7fPy8nJ0erVq1WvXr1SHyQAAEBpKlEAqlWrlv0zgJo3b55vvs1m08svv1xqgwMAACgLJQpA69evlzFGt9xyi5YtW6a6deva57m6uiooKEgXL14s9UECAACUphIFoMjISPu/w8PD7Z8JlOfUqVMKDAws8JviAQAAKoureghakqpVy5+dMjMzHZ4LAgAAqIxKdAUoNjZW0l/P+owePVqenp72eTk5Odq6davat29fqgMEAAAobSUKQD/++KMkyRijXbt2ydXV1T7P1dVV7dq10zPPPFO6IwQAAChlJX4IWpJiYmL0zjvvyMvLq0wGBQAAUJZKFIDyzJ07t7THAQAAUG6u+iFoAACAqooABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALKdSBKDp06crODhY7u7uCgsL07Zt2wpddt68ebLZbA6Tu7u7wzKXz8+bJk+eXNalAACAKqDCA9DixYsVGxursWPHaseOHWrXrp169eqlEydOFLqOl5eXjh8/bp+SkpIc5l867/jx45ozZ45sNpv69etX1uUAAIAqoMID0FtvvaXBgwcrJiZGrVu31owZM+Tp6ak5c+YUuo7NZpO/v7998vPzc5h/6Tx/f38tX75cN998s5o0aVLW5QAAgCqgQgNQdna2tm/frqioKHubk5OToqKitGXLlkLXy8zMVFBQkAIDA9W3b1/98ssvhS6bkpKiVatW6ZFHHil0maysLGVkZDhMAADg2lWhASg1NVU5OTn5ruD4+fkpOTm5wHVatGihOXPmaPny5Vq4cKFyc3MVERGho0ePFrj8/PnzVbNmTd19992FjmPChAny9va2T4GBgVdfFAAAqPQq/BZYSYWHhys6Olrt27dXZGSkPvvsM/n6+mrmzJkFLj9nzhw98MAD+R6UvlRcXJzS09Pt05EjR8pq+AAAoBKoVpEb9/HxkbOzs1JSUhzaU1JS5O/vX6w+XFxc1KFDB+3bty/fvK+//lp79+7V4sWLi+zDzc1Nbm5uxR84AACo0ir0CpCrq6tCQ0MVHx9vb8vNzVV8fLzCw8OL1UdOTo527dqlgICAfPM++OADhYaGql27dqU2ZgAAUPVV6BUgSYqNjdXAgQPVsWNHde7cWVOnTtW5c+cUExMjSYqOjlaDBg00YcIESdL48ePVpUsXhYSEKC0tTZMnT1ZSUpIGDRrk0G9GRoaWLl2qKVOmlHtNAACgcqvwANS/f3+dPHlSY8aMUXJystq3b681a9bYH4w+fPiwnJz+d6HqzJkzGjx4sJKTk1W7dm2FhoZq8+bNat26tUO/n3zyiYwxGjBgQLnWAwAAKj+bMcZU9CAqm4yMDHl7eys9PV1eXl4VPRwAAFAMJfn7XeXeBQYAAPB3EYAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlVIoANH36dAUHB8vd3V1hYWHatm1bocvOmzdPNpvNYXJ3d8+33J49e3THHXfI29tb1atXV6dOnXT48OGyLAMAAFQRFR6AFi9erNjYWI0dO1Y7duxQu3bt1KtXL504caLQdby8vHT8+HH7lJSU5DB///79uvHGG9WyZUtt2LBBP//8s0aPHl1gUAIAANZjM8aYihxAWFiYOnXqpHfffVeSlJubq8DAQD355JN6/vnn8y0/b948jRw5UmlpaYX2ed9998nFxUULFiy4qjFlZGTI29tb6enp8vLyuqo+AABA+SrJ3+8KvQKUnZ2t7du3Kyoqyt7m5OSkqKgobdmypdD1MjMzFRQUpMDAQPXt21e//PKLfV5ubq5WrVql5s2bq1evXqpXr57CwsL0f//3f4X2l5WVpYyMDIcJAABcuyo0AKWmpionJ0d+fn4O7X5+fkpOTi5wnRYtWmjOnDlavny5Fi5cqNzcXEVEROjo0aOSpBMnTigzM1MTJ05U79699d///ld33XWX7r77bm3cuLHAPidMmCBvb2/7FBgYWLqFAgCASqVaRQ+gpMLDwxUeHm5/HRERoVatWmnmzJl65ZVXlJubK0nq27evnnrqKUlS+/bttXnzZs2YMUORkZH5+oyLi1NsbKz9dUZGBiEIAIBrWIUGIB8fHzk7OyslJcWhPSUlRf7+/sXqw8XFRR06dNC+ffvsfVarVk2tW7d2WK5Vq1b65ptvCuzDzc1Nbm5uV1EBAACoiir0Fpirq6tCQ0MVHx9vb8vNzVV8fLzDVZ6i5OTkaNeuXQoICLD32alTJ+3du9dhuYSEBAUFBZXe4AEAQJVV4bfAYmNjNXDgQHXs2FGdO3fW1KlTde7cOcXExEiSoqOj1aBBA02YMEGSNH78eHXp0kUhISFKS0vT5MmTlZSUpEGDBtn7HDVqlPr3769u3brp5ptv1po1a7Ry5Upt2LChIkoEAACVTIUHoP79++vkyZMaM2aMkpOT1b59e61Zs8b+YPThw4fl5PS/C1VnzpzR4MGDlZycrNq1ays0NFSbN292uOV11113acaMGZowYYKGDx+uFi1a6NNPP9WNN95Y7vUBAIDKp8I/B6gy4nOAAACoeqrM5wABAABUBAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwnGoVPQCrOXAyU0mnzyu4bnU19qle0cMBAMCSCEDlJO18toYv2qlNiSftbd2a+WragA7y9nSpwJEBAGA93AIrJ8MX7dS3+1Id2r7dl6onF/1YQSMCAMC6CEDl4MDJTG1KPKkcYxzac4zRpsSTOph6roJGBgCANRGAykHS6fNFzj90igAEAEB5IgCVg6A6nkXOD67Lw9AAAJQnAlA5aOJbQ92a+crZZnNod7bZ1K2ZL+8GAwCgnBGAysm0AR3UNcTHoa1riI+mDehQQSMCAMC6eBt8OfH2dNGHj3TWwdRzOnTqHJ8DBABABSIAlbPGPgQfAAAqGrfAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5fBVGAUwxkiSMjIyKngkAACguPL+buf9HS8KAagAZ8+elSQFBgZW8EgAAEBJnT17Vt7e3kUuYzPFiUkWk5ubq99//101a9aUzWYr1b4zMjIUGBioI0eOyMvLq1T7rmyo9dplpXqp9dplpXqtUqsxRmfPnlX9+vXl5FT0Uz5cASqAk5OTGjZsWKbb8PLyuqZ/CC9FrdcuK9VLrdcuK9VrhVqvdOUnDw9BAwAAyyEAAQAAyyEAlTM3NzeNHTtWbm5uFT2UMket1y4r1Uut1y4r1WulWouLh6ABAIDlcAUIAABYDgEIAABYDgEIAABYDgEIAABYDgGoBI4dO6YHH3xQdevWlYeHh66//nr98MMP9vnjxo1Ty5YtVb16ddWuXVtRUVHaunWrQx/BwcGy2WwO08SJE4vc7h9//KGhQ4eqbt26qlGjhvr166eUlJQyqTHP3611w4YN+erMm77//vtCt9u9e/d8yz/22GNlWqt05Xov9dhjj8lms2nq1KkO7adPn9YDDzwgLy8v1apVS4888ogyMzOL3G5lPLaXKqjWQ4cO6ZFHHlHjxo3l4eGhpk2bauzYscrOzi5yuxVxbEvjuFaVc1b6+/VWpfP2SrU+/PDD+cbUu3dvhz6ulXP2SrVWpXO2PPFJ0MV05swZde3aVTfffLO++OIL+fr6KjExUbVr17Yv07x5c7377rtq0qSJLly4oLfffls9e/bUvn375Ovra19u/PjxGjx4sP11zZo1i9z2U089pVWrVmnp0qXy9vbWsGHDdPfdd+vbb78t/UJVOrVGRETo+PHjDv2OHj1a8fHx6tixY5HbHzx4sMaPH29/7enpWboFXqY49eb5/PPP9d1336l+/fr55j3wwAM6fvy4vvzyS/3555+KiYnRo48+qo8//rjQbVfGY5unsFp/++035ebmaubMmQoJCdHu3bs1ePBgnTt3Tm+++WaR2y/PY1tax1Wq/OesVDr1VpXztri19u7dW3PnzrW/vvwt4NfSOVtUrVXlnC13BsXy3HPPmRtvvLFE66SnpxtJZt26dfa2oKAg8/bbbxe7j7S0NOPi4mKWLl1qb9uzZ4+RZLZs2VKi8RRXadV6qezsbOPr62vGjx9fZD+RkZFmxIgRJdr231Xceo8ePWoaNGhgdu/ene84/vrrr0aS+f777+1tX3zxhbHZbObYsWMF9leZj21RtRbkjTfeMI0bNy5ymfI+tqVVa1U4Z40pm2NbWc/b4tQ6cOBA07dv30LnX0vn7JVqLUhlPGfLG7fAimnFihXq2LGj7rnnHtWrV08dOnTQ7NmzC10+Oztbs2bNkre3t9q1a+cwb+LEiapbt646dOigyZMn6+LFi4X2s337dv3555+Kioqyt7Vs2VKNGjXSli1b/n5hBSjNWi/t89SpU4qJibni9j/66CP5+PjouuuuU1xcnM6fP3/VtRRHcerNzc3VQw89pFGjRqlNmzb5+tiyZYtq1arl8L/kqKgoOTk55bsNmqeyHtsr1VqQ9PR01alT54rLleexLc1aK/s5K5XNsa2s521xf0dt2LBB9erVU4sWLfT444/r1KlT9nnX0jkrFV1rQSrjOVvuKjqBVRVubm7Gzc3NxMXFmR07dpiZM2cad3d3M2/ePIflVq5caapXr25sNpupX7++2bZtm8P8KVOmmPXr15uffvrJvPfee6ZWrVrmqaeeKnS7H330kXF1dc3X3qlTJ/Pss8+WTnGXKa1aL9WnTx/Tp0+fK2575syZZs2aNebnn382CxcuNA0aNDB33XXX366pKMWp9/XXXzc9evQwubm5xpj8VwVee+0107x583x9+/r6mv/85z8FbreyHtsr1Xq5xMRE4+XlZWbNmlXktsv72JZWrVXhnDWmbI5tZT1vi1ProkWLzPLly83PP/9sPv/8c9OqVSvTqVMnc/HiRWPMtXXOXqnWy1XWc7a8EYCKycXFxYSHhzu0Pfnkk6ZLly4ObZmZmSYxMdFs2bLF/Pvf/zbBwcEmJSWl0H4/+OADU61aNfPHH38UOL8iTrjSrvXIkSPGycnJLFu2rMRjiY+PN5LMvn37SrxucV2p3h9++MH4+fk5XBavqgGoNGq91NGjR03Tpk3NI488UuKxlPWxLe1a81TGc9aY0q+3Mp+3xf0ddan9+/c73Ka/Vs7Zglxe66Uq8zlb3rgFVkwBAQFq3bq1Q1urVq10+PBhh7bq1asrJCREXbp00QcffKBq1arpgw8+KLTfsLAwXbx4UYcOHSpwvr+/v7Kzs5WWlubQnpKSIn9//6uq5UpKu9a5c+eqbt26uuOOO0o8lrCwMEnSvn37SrxucV2p3q+//lonTpxQo0aNVK1aNVWrVk1JSUl6+umnFRwcLOmv43TixAmHPi5evKjTp08Xepwq47EtTq15fv/9d918882KiIjQrFmzSjyWsj62pVnr5eOubOesVPr1Vubztri/oy7VpEkT+fj42Md0rZyzBbm81jyV/ZwtbwSgYuratav27t3r0JaQkKCgoKAi18vNzVVWVlah83fu3CknJyfVq1evwPmhoaFycXFRfHy8vW3v3r06fPiwwsPDS1BB8ZVmrcYYzZ07V9HR0XJxcSnxWHbu3Cnpr18CZeVK9T700EP6+eeftXPnTvtUv359jRo1SmvXrpUkhYeHKy0tTdu3b7f38dVXXyk3N9f+S+NylfHYFqdW6a+35Xbv3l2hoaGaO3eunJxK/qukrI9tadVa0Lgr2zkrlW69lf28vZrfUUePHtWpU6fsY7pWztmCXF6rVDXO2XJX0Zegqopt27aZatWqmddee80kJiaajz76yHh6epqFCxcaY/66HRQXF2e2bNliDh06ZH744QcTExNj3NzczO7du40xxmzevNm8/fbbZufOnWb//v1m4cKFxtfX10RHR9u3c/ToUdOiRQuzdetWe9tjjz1mGjVqZL766ivzww8/mPDw8HyXRCtbrXnWrVtnJJk9e/bk287lte7bt8+MHz/e/PDDD+bgwYNm+fLlpkmTJqZbt25lVmtx6i1IQbcOevfubTp06GC2bt1qvvnmG9OsWTMzYMAA+/yqcGwLcnmtR48eNSEhIebWW281R48eNcePH7dPly5T0ce2NGqtKuesMaX3c2xM5T9vr1Tr2bNnzTPPPGO2bNliDh48aNatW2duuOEG06xZM4dbl9fCOVucWqvKOVveCEAlsHLlSnPdddcZNzc307JlS4cHyC5cuGDuuusuU79+fePq6moCAgLMHXfc4fBg8Pbt201YWJjx9vY27u7uplWrVub11193OCEPHjxoJJn169c79P3EE0+Y2rVrG09PT3PXXXc5/OBWxlrzDBgwwERERBS4jctrPXz4sOnWrZupU6eOcXNzMyEhIWbUqFEmPT29TGq8VFH1FqSgPxynTp0yAwYMMDVq1DBeXl4mJibGnD171j6/Khzbglxe69y5c42kAqc8leXY/t1aq9I5a0zp/BwbUzXO26JqPX/+vOnZs6fx9fU1Li4uJigoyAwePNgkJyc79HEtnLPFqbUqnbPlyWaMMeV5xQkAAKCi8QwQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQAACwHAIQgL+te/fuGjlyZLlv9+GHH9add95Z7tstT8HBwZo6dWpFDwO45hCAAFRZ77zzjubNm1fu2503b55q1apVonUIMkDlUq2iBwAABcnJyZHNZivySxu9vb3LcUQAriVcAQKuId27d9fw4cP17LPPqk6dOvL399e4ceMkSYcOHZLNZrN/o7MkpaWlyWazacOGDZKkDRs2yGazae3aterQoYM8PDx0yy236MSJE/riiy/UqlUreXl56f7779f58+cdtn3x4kUNGzZM3t7e8vHx0ejRo3XpN+1kZWXpmWeeUYMGDVS9enWFhYXZtyv976rKihUr1Lp1a7m5uenw4cNF1nv5LbCi6s9js9n03nvvqU+fPvLw8FCTJk20bNky+/y8fZCWlmZv27lzp2w2mw4dOqQNGzYoJiZG6enpstlsstls+bZxue7duyspKUlPPfWUfZ08n376qdq0aSM3NzcFBwdrypQpRfb1/vvvq1atWvZvJN+9e7f69OmjGjVqyM/PTw899JBSU1OLvU+MMRo3bpwaNWokNzc31a9fX8OHDy9yDMA1oWK/igxAaYqMjDReXl5m3LhxJiEhwcyfP9/YbDbz3//+1/5lhz/++KN9+TNnzjh8AeL69euNJNOlSxfzzTffmB07dpiQkBATGRlpevbsaXbs2GE2bdpk6tatayZOnOiw3Ro1apgRI0aY3377zSxcuNB4eno6fGnjoEGDTEREhNm0aZPZt2+fmTx5snFzczMJCQnGmL++sNHFxcVERESYb7/91vz222/m3LlzRdY7cOBA07dv32LVn0eSqVu3rpk9e7bZu3eveemll4yzs7P59ddfHfbBmTNn7Ov8+OOPRpI5ePCgycrKMlOnTjVeXl72b9S+9As0C3Lq1CnTsGFDM378eIdv4f7hhx+Mk5OTGT9+vNm7d6+ZO3eu8fDwMHPnzrWve+kXlk6aNMnUrVvX/o3dZ86cMb6+viYuLs7s2bPH7Nixw/To0cPcfPPNxd4nS5cuNV5eXmb16tUmKSnJbN269YpfogpcCwhAwDUkMjLS3HjjjQ5tnTp1Ms8991yJAtC6devsy0yYMMFIMvv377e3DRkyxPTq1cthu61atTK5ubn2tueee860atXKGGNMUlKScXZ2NseOHXMY26233mri4uKMMf/7xuqdO3cWu96CAlBh9eeRZB577DGHZcLCwszjjz/usA8KC0B5Y/X29i72OI0p+JvX77//ftOjRw+HtlGjRpnWrVvnW+/ZZ581AQEBZvfu3fZ5r7zyiunZs6fD+keOHDGSzN69e40xV94nU6ZMMc2bNzfZ2dklqgeo6rgFBlxj2rZt6/A6ICBAJ06cuOo+/Pz85OnpqSZNmji0Xd5nly5dHG7thIeHKzExUTk5Odq1a5dycnLUvHlz1ahRwz5t3LhR+/fvt6/j6uqab/wlVZz6w8PD873es2fP39ru1dizZ4+6du3q0Na1a1f7fsszZcoUzZ49W998843atGljb//pp5+0fv16h33asmVLSXLYr0Xtk3vuuUcXLlxQkyZNNHjwYH3++ee6ePFiqdcKVDY8BA1cY1xcXBxe22w25ebm2h8mNpc8l/Pnn39esQ+bzVZon8WVmZkpZ2dnbd++Xc7Ozg7zatSoYf+3h4eHQ4i6Gn93rCXZT+Xlpptu0qpVq7RkyRI9//zz9vbMzEzdfvvtmjRpUr51AgIC7P8uap8EBgZq7969Wrdunb788ks98cQTmjx5sjZu3JhvPeBaQgACLMLX11eSdPz4cXXo0EGSHB6I/ru2bt3q8Pq7775Ts2bN5OzsrA4dOignJ0cnTpzQTTfdVGrbvFrfffedoqOjHV7n7ZNL91Pt2rUl5d9Prq6uDldoiqOgdVq1aqVvv/3Woe3bb79V8+bNHYJi586dNWzYMPXu3VvVqlXTM888I0m64YYb9Omnnyo4OFjVql39r3MPDw/dfvvtuv322zV06FC1bNlSu3bt0g033HDVfQKVHbfAAIvw8PBQly5dNHHiRO3Zs0cbN27USy+9VGr9Hz58WLGxsdq7d68WLVqkadOmacSIEZKk5s2b64EHHlB0dLQ+++wzHTx4UNu2bdOECRO0atWqUhtDcS1dulRz5sxRQkKCxo4dq23btmnYsGGSpJCQEAUGBmrcuHFKTEzUqlWr8r0zKzg4WJmZmYqPj1dqamq+d8QVJDg4WJs2bdKxY8fs79J6+umnFR8fr1deeUUJCQmaP3++3n33XXvAuVRERIRWr16tl19+2f55QkOHDtXp06c1YMAAff/999q/f7/Wrl2rmJiYYge0efPm6YMPPtDu3bt14MABLVy4UB4eHgoKCirW+kBVRQACLGTOnDm6ePGiQkNDNXLkSL366qul1nd0dLQuXLigzp07a+jQoRoxYoQeffRR+/y5c+cqOjpaTz/9tFq0aKE777xT33//vRo1alRqYyiul19+WZ988onatm2rDz/8UIsWLVLr1q0l/XW7aNGiRfrtt9/Utm1bTZo0Kd9+ioiI0GOPPab+/fvL19dXb7zxxhW3OX78eB06dEhNmza1X2W64YYbtGTJEn3yySe67rrrNGbMGI0fP14PP/xwgX3ceOONWrVqlV566SVNmzZN9evX17fffqucnBz17NlT119/vUaOHKlatWoV+flJl6pVq5Zmz56trl27qm3btlq3bp1WrlypunXrFmt9oKqymUtvdAPANc5ms+nzzz+/5r9CA0DRuAIEAAAshwAEoNK69O3dl09ff/11RQ/P7uuvvy5yrAAqH26BAai09u3bV+i8Bg0ayMPDoxxHU7gLFy7o2LFjhc4PCQkpx9EAKA4CEAAAsBxugQEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMv5//KcgIuL/M9kAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"final_df = pd.DataFrame()\n",
"final_df[\"number_input_tokens\"] = valid_df[\"number_input_tokens\"]\n",
"final_df[\"number_output_tokens\"] = valid_df[\"number_output_tokens\"]\n",
"final_df[\"ttft_s\"] = valid_df[\"ttft_s\"]\n",
"final_df[\"end_to_end_latency_s\"] = valid_df[\"end_to_end_latency_s\"]\n",
"final_df[\"generation_throughput\"] = valid_df[\"request_output_throughput_token_per_s\"]\n",
"\n",
"mean_tokens_in = final_df[\"number_input_tokens\"].mean()\n",
"mean_tokens_out = valid_df[\"number_output_tokens\"].mean()\n",
"print(f\"Mean number of input tokens: {mean_tokens_in}. Mean number of output tokens: {mean_tokens_out}\")\n",
"final_df.plot.scatter(x=\"number_input_tokens\", y=\"ttft_s\", title=\"Number of Input Tokens vs. TTFT\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a14de79c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGzCAYAAADT4Tb9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvAklEQVR4nO3de1TUVb/H8c+AAl7wUioocsRILTO19EiEVhaJ6aHMfLyVIpkdE08m6VNmiaaJWZKdMk3zkqdj+pSXWqWWktbpaI8nL1k9XlIjvIGQFxQTEPb5w+U8TWDCODCwfb/WmrWaPXv/5rt31HzW77d/Mw5jjBEAAIAlfLxdAAAAgCcRbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuABTjcDg0cuRIb5dxVXA4HJo4caK3ywCsQrgBLOFwOEr12Lhxo7dLLZO77rpLbdq08cixNm3apIkTJ+rkyZMeOR6AyqmatwsA4Bn/9V//5fJ88eLFWrduXbH2G2+8sSLLqlQ2bdqkSZMmaciQIapXr563y5Ek/fbbb6pWjf8VA57Ef1GAJR555BGX5998843WrVtXrB2VS0BAgLdLAKzDZSngKpKbm6unn35aoaGh8vf3V6tWrfTqq6/KGHPZsVOmTJGPj4/eeOMNZ9uaNWvUpUsX1apVS4GBgerZs6d+/PFHl3FDhgxR7dq1dfjwYfXq1Uu1a9dWw4YNNWbMGBUWFnpkXjt37tSQIUN03XXXKSAgQMHBwXr00Uf166+/OvtMnDhRY8eOlSQ1b97ceZkuLS3N2ee9995Thw4dVKNGDV1zzTXq37+/Dh486PJeFy+T/eMf/1DXrl1Vs2ZNhYSEaPr06cXqOnfunCZOnKiWLVsqICBAjRs3Vu/evbV//35nn5L23Bw+fFiPPvqogoKC5O/vr5tuukkLFiwodvw33nhDN910k2rWrKn69eurY8eOWrJkiTtLCFiFMzfAVcIYo/vvv18bNmzQ0KFD1b59e3322WcaO3asDh8+rNdee+2SY59//nlNnTpVb7/9toYNGybpwmWwuLg4xcTE6OWXX9bZs2c1e/Zsde7cWdu3b1dYWJhzfGFhoWJiYhQREaFXX31V69ev14wZMxQeHq4nnnjiiue2bt06HThwQPHx8QoODtaPP/6ouXPn6scff9Q333wjh8Oh3r17a+/evXr//ff12muvqUGDBpKkhg0bSpJeeuklvfDCC+rbt68ee+wxZWVl6Y033tAdd9yh7du3u1zGOnHihLp3767evXurb9+++vDDD/XMM8/o5ptv1n333eec87/9278pNTVV/fv316hRo3T69GmtW7dOP/zwg8LDw0ucS2Zmpm677Tbnpu6GDRtqzZo1Gjp0qHJycvTUU09JkubNm6cnn3xSffr00ahRo3Tu3Dnt3LlTf//73zVw4MArXlOgSjMArJSQkGB+/5/4qlWrjCQzZcoUl359+vQxDofD7Nu3z9kmySQkJBhjjHn66aeNj4+PWbRokfP106dPm3r16plhw4a5HCsjI8PUrVvXpT0uLs5IMi+++KJL31tuucV06NDhsvO48847zU033fSnfc6ePVus7f333zeSzFdffeVse+WVV4wk8/PPP7v0TUtLM76+vuall15yaf/+++9NtWrVXNrvvPNOI8ksXrzY2ZaXl2eCg4PNQw895GxbsGCBkWRSUlKK1VZUVOT8Z0kmKSnJ+Xzo0KGmcePGJjs722VM//79Td26dZ1zfeCBBy67LsDVistSwFVi9erV8vX11ZNPPunS/vTTT8sYozVr1ri0G2M0cuRIvf7663rvvfcUFxfnfG3dunU6efKkBgwYoOzsbOfD19dXERER2rBhQ7H3Hz58uMvzLl266MCBAx6ZW40aNZz/fO7cOWVnZ+u2226TJG3btu2y41esWKGioiL17dvXZT7BwcFq0aJFsfnUrl3bZS+Tn5+fOnXq5DKf5cuXq0GDBvqP//iPYu/ncDhKrMMYo+XLlys2NlbGGJdaYmJidOrUKed86tWrp0OHDun//u//Ljs/4GrDZSngKvHLL7+oSZMmCgwMdGm/ePfUL7/84tK+ePFinTlzRrNnz9aAAQNcXvvpp58kSXfffXeJ71WnTh2X5wEBAc7LPxfVr19fJ06cKPtESnD8+HFNmjRJS5cu1bFjx1xeO3Xq1GXH//TTTzLGqEWLFiW+Xr16dZfnTZs2LRZQ6tevr507dzqf79+/X61atSrTnVBZWVk6efKk5s6dq7lz55bY5+L8nnnmGa1fv16dOnXS9ddfr27dumngwIGKiooq9fsBtiLcAChRVFSUduzYoTfffFN9+/bVNddc43ytqKhI0oV9N8HBwcXG/vED3dfXt1xr7du3rzZt2qSxY8eqffv2ql27toqKitS9e3dnrX+mqKhIDodDa9asKbHW2rVruzy/1HxMKTZmX64O6cKdb78/U/Z7bdu2lXQhlO7Zs0effPKJ1q5dq+XLl+utt97ShAkTNGnSpCuqA6jqCDfAVaJZs2Zav369Tp8+7XL2Zvfu3c7Xf+/666/X9OnTddddd6l79+5KTU11jru4GbZRo0aKjo6uoBmU7MSJE0pNTdWkSZM0YcIEZ/vFs0u/d6nLQeHh4TLGqHnz5mrZsqVH6goPD9ff//53FRQUFDvzcykNGzZUYGCgCgsLS7WutWrVUr9+/dSvXz/l5+erd+/eeumllzRu3DhuMcdVjT03wFWiR48eKiws1JtvvunS/tprr8nhcDjv8vm9tm3bavXq1dq1a5diY2P122+/SZJiYmJUp04dTZ06VQUFBcXGZWVllc8kSnDxLMofz5rMnDmzWN9atWpJUrFvKO7du7d8fX01adKkYscxxrjcUl5aDz30kLKzs4utd0m1XuTr66uHHnpIy5cv1w8//FDs9d+v6x9r8vPzU+vWrWWMKfHfCXA14cwNcJWIjY1V165dNX78eKWlpaldu3b6/PPP9dFHH+mpp5665K3Jt912mz766CP16NFDffr00apVq1SnTh3Nnj1bgwYN0q233qr+/furYcOGSk9P16effqqoqKgSP9TdlZWVpSlTphRrb968uR5++GHdcccdmj59ugoKChQSEqLPP/9cP//8c7H+HTp0kCSNHz9e/fv3V/Xq1RUbG6vw8HBNmTJF48aNU1pamnr16qXAwED9/PPPWrlypR5//HGNGTOmTDUPHjxYixcvVmJiorZs2aIuXbooNzdX69ev14gRI/TAAw+UOG7atGnasGGDIiIiNGzYMLVu3VrHjx/Xtm3btH79eh0/flyS1K1bNwUHBysqKkpBQUHatWuX3nzzTfXs2bPYvirgquOdm7QAlLc/3gpuzIVbuEePHm2aNGliqlevblq0aGFeeeUVl1uTjXG9Ffyijz76yFSrVs3069fPFBYWGmOM2bBhg4mJiTF169Y1AQEBJjw83AwZMsR8++23znFxcXGmVq1axepLSkoqVl9JLt56XdLjnnvuMcYYc+jQIfPggw+aevXqmbp165q//OUv5siRI8VuszbGmMmTJ5uQkBDj4+NT7Lbw5cuXm86dO5tatWqZWrVqmRtuuMEkJCSYPXv2uNRT0i3YcXFxplmzZi5tZ8+eNePHjzfNmzc31atXN8HBwaZPnz5m//79zj4l1ZiZmWkSEhJMaGioc9w999xj5s6d6+zz9ttvmzvuuMNce+21xt/f34SHh5uxY8eaU6dOXXZNAds5jLnCHXAAAACVCHtuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsctV9iV9RUZGOHDmiwMDAS34VOwAAqFyMMTp9+rSaNGkiH58/Pzdz1YWbI0eOKDQ01NtlAAAANxw8eFBNmzb90z5XXbi5+LXkBw8eVJ06dbxcDQAAKI2cnByFhoaW6udFrrpwc/FSVJ06dQg3AABUMaXZUsKGYgAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwilfDzVdffaXY2Fg1adJEDodDq1atuuyYjRs36tZbb5W/v7+uv/56LVq0qNzrBAAAVYdXw01ubq7atWunWbNmlar/zz//rJ49e6pr167asWOHnnrqKT322GP67LPPyrlSAABQVXj1hzPvu+8+3XfffaXuP2fOHDVv3lwzZsyQJN144436+uuv9dprrykmJqa8ygQAAFVIldpzs3nzZkVHR7u0xcTEaPPmzZcck5eXp5ycHJcHAACwl1fP3JRVRkaGgoKCXNqCgoKUk5Oj3377TTVq1Cg2Jjk5WZMmTaqoEhX27KcV9l6ekjatp7dLAABcAp8rZVelzty4Y9y4cTp16pTzcfDgQW+XBAAAylGVOnMTHByszMxMl7bMzEzVqVOnxLM2kuTv7y9/f/+KKA8AAFQCVerMTWRkpFJTU13a1q1bp8jISC9VBAAAKhuvhpszZ85ox44d2rFjh6QLt3rv2LFD6enpki5cUho8eLCz//Dhw3XgwAH99a9/1e7du/XWW2/pb3/7m0aPHu2N8gEAQCXk1XDz7bff6pZbbtEtt9wiSUpMTNQtt9yiCRMmSJKOHj3qDDqS1Lx5c3366adat26d2rVrpxkzZuidd97hNnAAAODk1T03d911l4wxl3y9pG8fvuuuu7R9+/ZyrAoAAFRlVWrPDQAAwOUQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFa+Hm1mzZiksLEwBAQGKiIjQli1b/rT/zJkz1apVK9WoUUOhoaEaPXq0zp07V0HVAgCAys6r4WbZsmVKTExUUlKStm3bpnbt2ikmJkbHjh0rsf+SJUv07LPPKikpSbt27dL8+fO1bNkyPffccxVcOQAAqKy8Gm5SUlI0bNgwxcfHq3Xr1pozZ45q1qypBQsWlNh/06ZNioqK0sCBAxUWFqZu3bppwIABlz3bAwAArh5eCzf5+fnaunWroqOj/1mMj4+io6O1efPmEsfcfvvt2rp1qzPMHDhwQKtXr1aPHj0u+T55eXnKyclxeQAAAHtV89YbZ2dnq7CwUEFBQS7tQUFB2r17d4ljBg4cqOzsbHXu3FnGGJ0/f17Dhw//08tSycnJmjRpkkdrBwAAlZfXNxSXxcaNGzV16lS99dZb2rZtm1asWKFPP/1UkydPvuSYcePG6dSpU87HwYMHK7BiAABQ0bx25qZBgwby9fVVZmamS3tmZqaCg4NLHPPCCy9o0KBBeuyxxyRJN998s3Jzc/X4449r/Pjx8vEpntX8/f3l7+/v+QkAAIBKyWtnbvz8/NShQwelpqY624qKipSamqrIyMgSx5w9e7ZYgPH19ZUkGWPKr1gAAFBleO3MjSQlJiYqLi5OHTt2VKdOnTRz5kzl5uYqPj5ekjR48GCFhIQoOTlZkhQbG6uUlBTdcsstioiI0L59+/TCCy8oNjbWGXIAAMDVzavhpl+/fsrKytKECROUkZGh9u3ba+3atc5Nxunp6S5nap5//nk5HA49//zzOnz4sBo2bKjY2Fi99NJL3poCAACoZBzmKruek5OTo7p16+rUqVOqU6eOx48f9uynHj9meUub1tPbJQAALoHPlQvK8vldpe6WAgAAuBzCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFbfCzYEDBzxdBwAAgEe4FW6uv/56de3aVe+9957OnTvn6ZoAAADc5la42bZtm9q2bavExEQFBwfr3//937Vlyxa3Cpg1a5bCwsIUEBCgiIiIyx7n5MmTSkhIUOPGjeXv76+WLVtq9erVbr03AACwj1vhpn379nr99dd15MgRLViwQEePHlXnzp3Vpk0bpaSkKCsrq1THWbZsmRITE5WUlKRt27apXbt2iomJ0bFjx0rsn5+fr3vvvVdpaWn68MMPtWfPHs2bN08hISHuTAMAAFjoijYUV6tWTb1799YHH3ygl19+Wfv27dOYMWMUGhqqwYMH6+jRo386PiUlRcOGDVN8fLxat26tOXPmqGbNmlqwYEGJ/RcsWKDjx49r1apVioqKUlhYmO688061a9fuSqYBAAAsckXh5ttvv9WIESPUuHFjpaSkaMyYMdq/f7/WrVunI0eO6IEHHrjk2Pz8fG3dulXR0dH/LMbHR9HR0dq8eXOJYz7++GNFRkYqISFBQUFBatOmjaZOnarCwsJLvk9eXp5ycnJcHgAAwF7V3BmUkpKihQsXas+ePerRo4cWL16sHj16yMfnQlZq3ry5Fi1apLCwsEseIzs7W4WFhQoKCnJpDwoK0u7du0scc+DAAX3xxRd6+OGHtXr1au3bt08jRoxQQUGBkpKSShyTnJysSZMmuTNNAABQBbkVbmbPnq1HH31UQ4YMUePGjUvs06hRI82fP/+KivujoqIiNWrUSHPnzpWvr686dOigw4cP65VXXrlkuBk3bpwSExOdz3NychQaGurRugAAQOXhVrj56aefLtvHz89PcXFxl3y9QYMG8vX1VWZmpkt7ZmamgoODSxzTuHFjVa9eXb6+vs62G2+8URkZGcrPz5efn1+xMf7+/vL3979svQAAwA5u7blZuHChPvjgg2LtH3zwgd59991SHcPPz08dOnRQamqqs62oqEipqamKjIwscUxUVJT27dunoqIiZ9vevXvVuHHjEoMNAAC4+rgVbpKTk9WgQYNi7Y0aNdLUqVNLfZzExETNmzdP7777rnbt2qUnnnhCubm5io+PlyQNHjxY48aNc/Z/4okndPz4cY0aNUp79+7Vp59+qqlTpyohIcGdaQAAAAu5dVkqPT1dzZs3L9berFkzpaenl/o4/fr1U1ZWliZMmKCMjAy1b99ea9eudW4yTk9Pd25SlqTQ0FB99tlnGj16tNq2bauQkBCNGjVKzzzzjDvTAAAAFnIr3DRq1Eg7d+4sdjfUd999p2uvvbZMxxo5cqRGjhxZ4msbN24s1hYZGalvvvmmTO8BAACuHm5dlhowYICefPJJbdiwQYWFhSosLNQXX3yhUaNGqX///p6uEQAAoNTcOnMzefJkpaWl6Z577lG1ahcOUVRUpMGDB5dpzw0AAICnuRVu/Pz8tGzZMk2ePFnfffedatSooZtvvlnNmjXzdH0AAABl4la4uahly5Zq2bKlp2oBAAC4Ym6Fm8LCQi1atEipqak6duyYy/fOSNIXX3zhkeIAAADKyq1wM2rUKC1atEg9e/ZUmzZt5HA4PF0XAACAW9wKN0uXLtXf/vY39ejRw9P1AAAAXBG3bgX38/PT9ddf7+laAAAArphb4ebpp5/W66+/LmOMp+sBAAC4Im5dlvr666+1YcMGrVmzRjfddJOqV6/u8vqKFSs8UhwAAEBZuRVu6tWrpwcffNDTtQAAAFwxt8LNwoULPV0HAACAR7i150aSzp8/r/Xr1+vtt9/W6dOnJUlHjhzRmTNnPFYcAABAWbl15uaXX35R9+7dlZ6erry8PN17770KDAzUyy+/rLy8PM2ZM8fTdQIAAJSKW2duRo0apY4dO+rEiROqUaOGs/3BBx9Uamqqx4oDAAAoK7fO3PzP//yPNm3aJD8/P5f2sLAwHT582COFAQAAuMOtMzdFRUUqLCws1n7o0CEFBgZecVEAAADucivcdOvWTTNnznQ+dzgcOnPmjJKSkvhJBgAA4FVuXZaaMWOGYmJi1Lp1a507d04DBw7UTz/9pAYNGuj999/3dI0AAACl5la4adq0qb777jstXbpUO3fu1JkzZzR06FA9/PDDLhuMAQAAKppb4UaSqlWrpkceecSTtQAAAFwxt8LN4sWL//T1wYMHu1UMAADAlXIr3IwaNcrleUFBgc6ePSs/Pz/VrFmTcAMAALzGrbulTpw44fI4c+aM9uzZo86dO7OhGAAAeJXbvy31Ry1atNC0adOKndUBAACoSB4LN9KFTcZHjhzx5CEBAADKxK09Nx9//LHLc2OMjh49qjfffFNRUVEeKQwAAMAdboWbXr16uTx3OBxq2LCh7r77bs2YMcMTdQEAALjFrXBTVFTk6ToAAAA8wqN7bgAAALzNrTM3iYmJpe6bkpLizlsAAAC4xa1ws337dm3fvl0FBQVq1aqVJGnv3r3y9fXVrbfe6uzncDg8UyUAAEApuRVuYmNjFRgYqHfffVf169eXdOGL/eLj49WlSxc9/fTTHi0SAACgtNzaczNjxgwlJyc7g40k1a9fX1OmTOFuKQAA4FVuhZucnBxlZWUVa8/KytLp06evuCgAAAB3uRVuHnzwQcXHx2vFihU6dOiQDh06pOXLl2vo0KHq3bu3p2sEAAAoNbf23MyZM0djxozRwIEDVVBQcOFA1app6NCheuWVVzxaIAAAQFm4FW5q1qypt956S6+88or2798vSQoPD1etWrU8WhwAAEBZXdGX+B09elRHjx5VixYtVKtWLRljPFUXAACAW9wKN7/++qvuuecetWzZUj169NDRo0clSUOHDuU2cAAA4FVuhZvRo0erevXqSk9PV82aNZ3t/fr109q1az1WHAAAQFm5tefm888/12effaamTZu6tLdo0UK//PKLRwoDAABwh1tnbnJzc13O2Fx0/Phx+fv7X3FRAAAA7nIr3HTp0kWLFy92Pnc4HCoqKtL06dPVtWtXjxUHAABQVm5dlpo+fbruueceffvtt8rPz9df//pX/fjjjzp+/Lj+93//19M1AgAAlJpbZ27atGmjvXv3qnPnznrggQeUm5ur3r17a/v27QoPD/d0jQAAAKVW5jM3BQUF6t69u+bMmaPx48eXR00AAABuK/OZm+rVq2vnzp3lUQsAAMAVc+uy1COPPKL58+d7uhYAAIAr5taG4vPnz2vBggVav369OnToUOw3pVJSUjxSHAAAQFmVKdwcOHBAYWFh+uGHH3TrrbdKkvbu3evSx+FweK46AACAMipTuGnRooWOHj2qDRs2SLrwcwv/+Z//qaCgoHIpDgAAoKzKtOfmj7/6vWbNGuXm5nq0IAAAgCvh1obii/4YdgAAALytTOHG4XAU21PDHhsAAFCZlGnPjTFGQ4YMcf445rlz5zR8+PBid0utWLHCcxUCAACUQZnCTVxcnMvzRx55xKPFAAAAXKkyhZuFCxeWVx0AAAAecUUbigEAACobwg0AALBKpQg3s2bNUlhYmAICAhQREaEtW7aUatzSpUvlcDjUq1ev8i0QAABUGV4PN8uWLVNiYqKSkpK0bds2tWvXTjExMTp27NifjktLS9OYMWPUpUuXCqoUAABUBV4PNykpKRo2bJji4+PVunVrzZkzRzVr1tSCBQsuOaawsFAPP/ywJk2apOuuu+5Pj5+Xl6ecnByXBwAAsJdXw01+fr62bt2q6OhoZ5uPj4+io6O1efPmS4578cUX1ahRIw0dOvSy75GcnKy6des6H6GhoR6pHQAAVE5eDTfZ2dkqLCws9sObQUFBysjIKHHM119/rfnz52vevHmleo9x48bp1KlTzsfBgwevuG4AAFB5lel7brzt9OnTGjRokObNm6cGDRqUaoy/v7/zG5UBAID9vBpuGjRoIF9fX2VmZrq0Z2ZmKjg4uFj//fv3Ky0tTbGxsc62oqIiSVK1atW0Z88ehYeHl2/RAACgUvPqZSk/Pz916NBBqampzraioiKlpqYqMjKyWP8bbrhB33//vXbs2OF83H///eratat27NjBfhoAAOD9y1KJiYmKi4tTx44d1alTJ82cOVO5ubmKj4+XJA0ePFghISFKTk5WQECA2rRp4zK+Xr16klSsHQAAXJ28Hm769eunrKwsTZgwQRkZGWrfvr3Wrl3r3GScnp4uHx+v37EOAACqCK+HG0kaOXKkRo4cWeJrGzdu/NOxixYt8nxBAACgyuKUCAAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsUinCzaxZsxQWFqaAgABFRERoy5Ytl+w7b948denSRfXr11f9+vUVHR39p/0BAMDVxevhZtmyZUpMTFRSUpK2bdumdu3aKSYmRseOHSux/8aNGzVgwABt2LBBmzdvVmhoqLp166bDhw9XcOUAAKAy8nq4SUlJ0bBhwxQfH6/WrVtrzpw5qlmzphYsWFBi///+7//WiBEj1L59e91www165513VFRUpNTU1AquHAAAVEZeDTf5+fnaunWroqOjnW0+Pj6Kjo7W5s2bS3WMs2fPqqCgQNdcc02Jr+fl5SknJ8flAQAA7OXVcJOdna3CwkIFBQW5tAcFBSkjI6NUx3jmmWfUpEkTl4D0e8nJyapbt67zERoaesV1AwCAysvrl6WuxLRp07R06VKtXLlSAQEBJfYZN26cTp065XwcPHiwgqsEAAAVqZo337xBgwby9fVVZmamS3tmZqaCg4P/dOyrr76qadOmaf369Wrbtu0l+/n7+8vf398j9QIAgMrPq2du/Pz81KFDB5fNwBc3B0dGRl5y3PTp0zV58mStXbtWHTt2rIhSAQBAFeHVMzeSlJiYqLi4OHXs2FGdOnXSzJkzlZubq/j4eEnS4MGDFRISouTkZEnSyy+/rAkTJmjJkiUKCwtz7s2pXbu2ateu7bV5AACAysHr4aZfv37KysrShAkTlJGRofbt22vt2rXOTcbp6eny8fnnCabZs2crPz9fffr0cTlOUlKSJk6cWJGlAwCASsjr4UaSRo4cqZEjR5b42saNG12ep6WllX9BAACgyqrSd0sBAAD8EeEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxSKcLNrFmzFBYWpoCAAEVERGjLli1/2v+DDz7QDTfcoICAAN18881avXp1BVUKAAAqO6+Hm2XLlikxMVFJSUnatm2b2rVrp5iYGB07dqzE/ps2bdKAAQM0dOhQbd++Xb169VKvXr30ww8/VHDlAACgMvJ6uElJSdGwYcMUHx+v1q1ba86cOapZs6YWLFhQYv/XX39d3bt319ixY3XjjTdq8uTJuvXWW/Xmm29WcOUAAKAyqubNN8/Pz9fWrVs1btw4Z5uPj4+io6O1efPmEsds3rxZiYmJLm0xMTFatWpVif3z8vKUl5fnfH7q1ClJUk5OzhVWX7KivLPlctzyVF5rAQC4cnyuuB7TGHPZvl4NN9nZ2SosLFRQUJBLe1BQkHbv3l3imIyMjBL7Z2RklNg/OTlZkyZNKtYeGhrqZtX2qTvT2xUAAGxSnp8rp0+fVt26df+0j1fDTUUYN26cy5meoqIiHT9+XNdee60cDocXKyt/OTk5Cg0N1cGDB1WnTh1vl1OlsHbuYd3cw7q5j7VzT1VcN2OMTp8+rSZNmly2r1fDTYMGDeTr66vMzEyX9szMTAUHB5c4Jjg4uEz9/f395e/v79JWr14994uugurUqVNl/ngrG9bOPaybe1g397F27qlq63a5MzYXeXVDsZ+fnzp06KDU1FRnW1FRkVJTUxUZGVnimMjISJf+krRu3bpL9gcAAFcXr1+WSkxMVFxcnDp27KhOnTpp5syZys3NVXx8vCRp8ODBCgkJUXJysiRp1KhRuvPOOzVjxgz17NlTS5cu1bfffqu5c+d6cxoAAKCS8Hq46devn7KysjRhwgRlZGSoffv2Wrt2rXPTcHp6unx8/nmC6fbbb9eSJUv0/PPP67nnnlOLFi20atUqtWnTxltTqLT8/f2VlJRU7LIcLo+1cw/r5h7WzX2snXtsXzeHKc09VQAAAFWE17/EDwAAwJMINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwU0V89dVXio2NVZMmTeRwOC75Q6G/l5eXp/Hjx6tZs2by9/dXWFiYy6+tz5s3T126dFH9+vVVv359RUdHa8uWLeU4C+8oj7X7vaVLl8rhcKhXr16eLdzLymvdTp48qYSEBDVu3Fj+/v5q2bKlVq9eXU6zqHjltW4zZ85Uq1atVKNGDYWGhmr06NE6d+5cOc3CO8q6dkOGDJHD4Sj2uOmmm1z6zZo1S2FhYQoICFBERIR1/58rj3VLTk7Wv/7rvyowMFCNGjVSr169tGfPnnKeiecQbqqI3NxctWvXTrNmzSr1mL59+yo1NVXz58/Xnj179P7776tVq1bO1zdu3KgBAwZow4YN2rx5s0JDQ9WtWzcdPny4PKbgNeWxdhelpaVpzJgx6tKliydLrhTKY93y8/N17733Ki0tTR9++KH27NmjefPmKSQkpDym4BXlsW5LlizRs88+q6SkJO3atUvz58/XsmXL9Nxzz5XHFLymrGv3+uuv6+jRo87HwYMHdc011+gvf/mLs8+yZcuUmJiopKQkbdu2Te3atVNMTIyOHTtWXtOocOWxbl9++aUSEhL0zTffaN26dSooKFC3bt2Um5tbXtPwLIMqR5JZuXLln/ZZs2aNqVu3rvn1119Lfdzz58+bwMBA8+67715hhZWXJ9fu/Pnz5vbbbzfvvPOOiYuLMw888IDnCq1kPLVus2fPNtddd53Jz8/3cIWVk6fWLSEhwdx9990ubYmJiSYqKsoTZVZKpVm7P1q5cqVxOBwmLS3N2dapUyeTkJDgfF5YWGiaNGlikpOTPVVqpeKpdfujY8eOGUnmyy+/vMIKKwZnbiz18ccfq2PHjpo+fbpCQkLUsmVLjRkzRr/99tslx5w9e1YFBQW65pprKrDSyqe0a/fiiy+qUaNGGjp0qJcqrVxKs24ff/yxIiMjlZCQoKCgILVp00ZTp05VYWGhFyv3rtKs2+23366tW7c6L6ccOHBAq1evVo8ePbxVdqU0f/58RUdHq1mzZpIunCncunWroqOjnX18fHwUHR2tzZs3e6vMSueP61aSU6dOSVKV+Xzw+s8voHwcOHBAX3/9tQICArRy5UplZ2drxIgR+vXXX7Vw4cISxzzzzDNq0qSJy/8IrkalWbuvv/5a8+fP144dO7xbbCVSmnU7cOCAvvjiCz388MNavXq19u3bpxEjRqigoEBJSUlenoF3lGbdBg4cqOzsbHXu3FnGGJ0/f17Dhw+37rLUlThy5IjWrFmjJUuWONuys7NVWFjo/Dmfi4KCgrR79+6KLrFSKmnd/qioqEhPPfWUoqKiqs5PHXn71BHKTqU47XjvvfeagIAAc/LkSWfb8uXLjcPhMGfPni3WPzk52dSvX9989913ni63UvHE2uXk5JiwsDCzevVq5+tclird31yLFi1MaGioOX/+vLPPjBkzTHBwcLnU7W2eWrcNGzaYoKAgM2/ePLNz506zYsUKExoaal588cXyLN+rSrN2vzd16lRz7bXXmry8PGfb4cOHjSSzadMml75jx441nTp18lSplYon1u2Phg8fbpo1a2YOHjzogQorBmduLNW4cWOFhISobt26zrYbb7xRxhgdOnRILVq0cLa/+uqrmjZtmtavX6+2bdt6o9xK5XJrl5ubq7S0NMXGxjpfLyoqkiRVq1ZNe/bsUXh4eIXX7W2l+Ztr3LixqlevLl9fX5c+GRkZys/Pl5+fnzdK96rSrNsLL7ygQYMG6bHHHpMk3XzzzcrNzdXjjz+u8ePHu/y48NXIGKMFCxZo0KBBLn9DDRo0kK+vrzIzM136Z2ZmKjg4uKLLrHQutW6/N3LkSH3yySf66quv1LRp0wqu0H1X938RFouKitKRI0d05swZZ9vevXvl4+Pj8gc6ffp0TZ48WWvXrlXHjh29UWqlc7m1u+GGG/T9999rx44dzsf999+vrl27aseOHQoNDfVi9d5Tmr+5qKgo7du3zxkGL/Zp3LjxVRlspNKt29mzZ4sFmIsB0fDbx/ryyy+1b9++Yvvf/Pz81KFDB6WmpjrbioqKlJqaqsjIyIous9K51LpJF/6uRo4cqZUrV+qLL75Q8+bNvVDhFfDeSSOUxenTp8327dvN9u3bjSSTkpJitm/fbn755RdjjDHPPvusGTRokEv/pk2bmj59+pgff/zRfPnll6ZFixbmsccec/aZNm2a8fPzMx9++KE5evSo83H69OkKn195Ko+1+yMbL0uVx7qlp6ebwMBAM3LkSLNnzx7zySefmEaNGpkpU6ZU+PzKS3msW1JSkgkMDDTvv/++OXDggPn8889NeHi46du3b4XPrzyVde0ueuSRR0xERESJx1y6dKnx9/c3ixYtMv/4xz/M448/burVq2cyMjLKdS4VqTzW7YknnjB169Y1GzdudPl8KGlbQ2VEuKkiNmzYYCQVe8TFxRljLny43nnnnS5jdu3aZaKjo02NGjVM06ZNTWJiossfZrNmzUo8ZlJSUsVNrAKUx9r9kY3hprzWbdOmTSYiIsL4+/ub6667zrz00ksue3CquvJYt4KCAjNx4kQTHh5uAgICTGhoqBkxYoQ5ceJExU2sArizdidPnjQ1atQwc+fOveRx33jjDfMv//Ivxs/Pz3Tq1Ml888035TiLilce61bS8SSZhQsXlu9kPMRhDOc0AQCAPdhzAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACr/D/vevnJpwE9FgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_token_latencies = valid_df['end_to_end_latency_s'].apply(pd.Series).stack()\n",
"all_token_latencies = all_token_latencies.reset_index(drop=True)\n",
"all_token_latencies.plot.hist(title=\"Token Latencies\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}