diff --git "a/demo/demo2.json" "b/demo/demo2.json" new file mode 100644--- /dev/null +++ "b/demo/demo2.json" @@ -0,0 +1 @@ +[{"layout_dets": [{"category_id": 0, "poly": [282.1632080078125, 156.2249755859375, 1416.6795654296875, 156.2249755859375, 1416.6795654296875, 313.81280517578125, 282.1632080078125, 313.81280517578125], "score": 0.999998927116394}, {"category_id": 1, "poly": [861.656982421875, 522.7763061523438, 1569.3853759765625, 522.7763061523438, 1569.3853759765625, 656.883544921875, 861.656982421875, 656.883544921875], "score": 0.9999970197677612}, {"category_id": 1, "poly": [131.8020782470703, 924.7362670898438, 838.9530639648438, 924.7362670898438, 838.9530639648438, 1323.7529296875, 131.8020782470703, 1323.7529296875], "score": 0.9999949932098389}, {"category_id": 1, "poly": [133.32005310058594, 1324.5035400390625, 839.2289428710938, 1324.5035400390625, 839.2289428710938, 1589.4503173828125, 133.32005310058594, 1589.4503173828125], "score": 0.999994158744812}, {"category_id": 1, "poly": [863.3811645507812, 1486.610107421875, 1569.2880859375, 1486.610107421875, 1569.2880859375, 1852.443603515625, 863.3811645507812, 1852.443603515625], "score": 0.9999936819076538}, {"category_id": 1, "poly": [862.9096069335938, 1187.8067626953125, 1568.2279052734375, 1187.8067626953125, 1568.2279052734375, 1486.08935546875, 862.9096069335938, 1486.08935546875], "score": 0.9999932050704956}, {"category_id": 1, "poly": [131.8186492919922, 1652.7752685546875, 837.5543823242188, 1652.7752685546875, 837.5543823242188, 2019.429443359375, 131.8186492919922, 2019.429443359375], "score": 0.9999901056289673}, {"category_id": 0, "poly": [375.1526794433594, 881.8807983398438, 594.3075561523438, 881.8807983398438, 594.3075561523438, 913.4786987304688, 375.1526794433594, 913.4786987304688], "score": 0.9999892115592957}, {"category_id": 2, "poly": [636.1867065429688, 2099.795654296875, 1063.7423095703125, 2099.795654296875, 1063.7423095703125, 2124.524169921875, 636.1867065429688, 2124.524169921875], "score": 0.9999860525131226}, {"category_id": 0, "poly": [375.91864013671875, 1610.209228515625, 592.8395385742188, 1610.209228515625, 592.8395385742188, 1641.5789794921875, 375.91864013671875, 1641.5789794921875], "score": 0.9999815821647644}, {"category_id": 4, "poly": [860.6583251953125, 995.6574096679688, 1569.622314453125, 995.6574096679688, 1569.622314453125, 1126.8409423828125, 860.6583251953125, 1126.8409423828125], "score": 0.9999815821647644}, {"category_id": 1, "poly": [443.1008605957031, 353.8008728027344, 1250.531494140625, 353.8008728027344, 1250.531494140625, 464.65576171875, 443.1008605957031, 464.65576171875], "score": 0.9999791979789734}, {"category_id": 1, "poly": [130.8282928466797, 523.2079467773438, 836.5639038085938, 523.2079467773438, 836.5639038085938, 862.0206909179688, 130.8282928466797, 862.0206909179688], "score": 0.9999784231185913}, {"category_id": 1, "poly": [862.6514282226562, 1851.426513671875, 1568.510498046875, 1851.426513671875, 1568.510498046875, 2017.93359375, 862.6514282226562, 2017.93359375], "score": 0.9999769926071167}, {"category_id": 3, "poly": [882.3795166015625, 685.376708984375, 1544.4088134765625, 685.376708984375, 1544.4088134765625, 969.22265625, 882.3795166015625, 969.22265625], "score": 0.9994785785675049}, {"category_id": 13, "poly": [1195, 1062, 1226, 1062, 1226, 1096, 1195, 1096], "score": 0.88, "latex": "d_{p}"}, {"category_id": 13, "poly": [1304, 1030, 1327, 1030, 1327, 1061, 1304, 1061], "score": 0.65, "latex": "\\bar{\\bf p}"}, {"category_id": 15, "poly": [344.0, 165.0, 1354.0, 172.0, 1353.0, 236.0, 344.0, 229.0], "score": 0.99, "text": "Real-time Temporal Stereo Matching"}, {"category_id": 15, "poly": [293.0, 254.0, 1402.0, 254.0, 1402.0, 309.0, 293.0, 309.0], "score": 0.99, "text": "using Iterative Adaptive Support Weights"}, {"category_id": 15, "poly": [864.0, 527.0, 1568.0, 527.0, 1568.0, 559.0, 864.0, 559.0], "score": 0.99, "text": "disparity map. Note that individual disparities can be converted"}, {"category_id": 15, "poly": [864.0, 561.0, 1568.0, 561.0, 1568.0, 594.0, 864.0, 594.0], "score": 0.98, "text": "to actual depths if the geometry of the camera setup is"}, {"category_id": 15, "poly": [859.0, 587.0, 1568.0, 591.0, 1568.0, 630.0, 859.0, 626.0], "score": 0.98, "text": " known, i.e., the stereo configuration of cameras has been pre-"}, {"category_id": 15, "poly": [862.0, 626.0, 984.0, 626.0, 984.0, 658.0, 862.0, 658.0], "score": 1.0, "text": "calibrated."}, {"category_id": 15, "poly": [155.0, 921.0, 839.0, 924.0, 838.0, 963.0, 155.0, 960.0], "score": 0.98, "text": " Modern stereo matching algorithms achieve excellent results"}, {"category_id": 15, "poly": [127.0, 956.0, 838.0, 958.0, 838.0, 997.0, 127.0, 995.0], "score": 0.98, "text": " on static stereo images, as demonstrated by the Middlebury"}, {"category_id": 15, "poly": [132.0, 995.0, 836.0, 995.0, 836.0, 1027.0, 132.0, 1027.0], "score": 0.98, "text": "stereo performance benchmark [1], [2]. However, their ap-"}, {"category_id": 15, "poly": [134.0, 1027.0, 834.0, 1027.0, 834.0, 1059.0, 134.0, 1059.0], "score": 1.0, "text": "plication to stereo video sequences does not guarantee inter-"}, {"category_id": 15, "poly": [134.0, 1061.0, 836.0, 1061.0, 836.0, 1093.0, 134.0, 1093.0], "score": 0.99, "text": "frame consistency of matches extracted from subsequent stereo"}, {"category_id": 15, "poly": [132.0, 1095.0, 838.0, 1095.0, 838.0, 1125.0, 132.0, 1125.0], "score": 0.99, "text": "frame pairs. The lack of temporal consistency of matches"}, {"category_id": 15, "poly": [134.0, 1128.0, 836.0, 1128.0, 836.0, 1157.0, 134.0, 1157.0], "score": 1.0, "text": "between successive frames introduces spurious artifacts in the"}, {"category_id": 15, "poly": [132.0, 1160.0, 836.0, 1160.0, 836.0, 1192.0, 132.0, 1192.0], "score": 0.99, "text": "resulting disparity maps. The problem of obtaining temporally"}, {"category_id": 15, "poly": [132.0, 1194.0, 838.0, 1194.0, 838.0, 1226.0, 132.0, 1226.0], "score": 0.98, "text": "consistent sequences of disparity maps from video streams is"}, {"category_id": 15, "poly": [134.0, 1228.0, 838.0, 1228.0, 838.0, 1260.0, 134.0, 1260.0], "score": 0.98, "text": "known as the temporal stereo correspondence problem, yet"}, {"category_id": 15, "poly": [129.0, 1258.0, 841.0, 1260.0, 841.0, 1293.0, 129.0, 1290.0], "score": 0.98, "text": "the amount of research efforts oriented towards finding an"}, {"category_id": 15, "poly": [134.0, 1292.0, 760.0, 1292.0, 760.0, 1325.0, 134.0, 1325.0], "score": 0.99, "text": "effective solution to this problem is surprisingly small."}, {"category_id": 15, "poly": [157.0, 1320.0, 836.0, 1322.0, 836.0, 1361.0, 157.0, 1359.0], "score": 0.98, "text": " A method is proposed for real-time temporal stereo match-"}, {"category_id": 15, "poly": [134.0, 1361.0, 836.0, 1361.0, 836.0, 1393.0, 134.0, 1393.0], "score": 1.0, "text": "ing that efficiently propagates matching cost information be-"}, {"category_id": 15, "poly": [134.0, 1393.0, 836.0, 1393.0, 836.0, 1425.0, 134.0, 1425.0], "score": 0.99, "text": "tween consecutive frames of a stereo video sequence. This"}, {"category_id": 15, "poly": [132.0, 1423.0, 834.0, 1425.0, 834.0, 1458.0, 132.0, 1455.0], "score": 0.98, "text": "method is invariant to the number of prior frames being"}, {"category_id": 15, "poly": [134.0, 1458.0, 836.0, 1458.0, 836.0, 1490.0, 134.0, 1490.0], "score": 0.99, "text": "considered, and can be easily incorporated into any local stereo"}, {"category_id": 15, "poly": [132.0, 1492.0, 836.0, 1492.0, 836.0, 1524.0, 132.0, 1524.0], "score": 0.98, "text": "method based on edge-aware filters. The iterative adaptive"}, {"category_id": 15, "poly": [132.0, 1526.0, 838.0, 1526.0, 838.0, 1558.0, 132.0, 1558.0], "score": 0.99, "text": "support matching algorithm presented in [3] serves as a"}, {"category_id": 15, "poly": [132.0, 1558.0, 557.0, 1558.0, 557.0, 1590.0, 132.0, 1590.0], "score": 0.99, "text": "foundation for the proposed method."}, {"category_id": 15, "poly": [887.0, 1483.0, 1571.0, 1485.0, 1571.0, 1524.0, 887.0, 1522.0], "score": 0.98, "text": " In contrast, local methods, which are typically built upon"}, {"category_id": 15, "poly": [859.0, 1517.0, 1573.0, 1519.0, 1573.0, 1558.0, 859.0, 1556.0], "score": 0.97, "text": " the Winner-Takes-All (WTA) framework, have the property of "}, {"category_id": 15, "poly": [864.0, 1556.0, 1566.0, 1556.0, 1566.0, 1588.0, 864.0, 1588.0], "score": 0.99, "text": "computational regularity and are thus suitable for implemen-"}, {"category_id": 15, "poly": [862.0, 1588.0, 1566.0, 1588.0, 1566.0, 1620.0, 862.0, 1620.0], "score": 1.0, "text": "tation on parallel graphics hardware. Within the WTA frame-"}, {"category_id": 15, "poly": [862.0, 1616.0, 1568.0, 1618.0, 1568.0, 1657.0, 862.0, 1655.0], "score": 0.98, "text": "work, local stereo algorithms consider a range of disparity"}, {"category_id": 15, "poly": [864.0, 1655.0, 1566.0, 1655.0, 1566.0, 1687.0, 864.0, 1687.0], "score": 0.98, "text": "hypotheses and compute a volume of pixel-wise dissimilarity"}, {"category_id": 15, "poly": [862.0, 1689.0, 1571.0, 1689.0, 1571.0, 1721.0, 862.0, 1721.0], "score": 0.99, "text": "metrics between the reference image and the matched image at"}, {"category_id": 15, "poly": [862.0, 1723.0, 1568.0, 1721.0, 1568.0, 1753.0, 862.0, 1755.0], "score": 0.99, "text": "every considered disparity value. Final disparities are chosen"}, {"category_id": 15, "poly": [864.0, 1755.0, 1568.0, 1755.0, 1568.0, 1785.0, 864.0, 1785.0], "score": 1.0, "text": "from the cost volume by traversing through its values and"}, {"category_id": 15, "poly": [866.0, 1788.0, 1568.0, 1788.0, 1568.0, 1820.0, 866.0, 1820.0], "score": 0.99, "text": "selecting the disparities associated with minimum matching"}, {"category_id": 15, "poly": [859.0, 1817.0, 1377.0, 1820.0, 1377.0, 1859.0, 859.0, 1856.0], "score": 0.98, "text": " costs for every pixel of the reference image."}, {"category_id": 15, "poly": [885.0, 1187.0, 1571.0, 1187.0, 1571.0, 1226.0, 885.0, 1226.0], "score": 0.97, "text": " In their excellent taxonomy paper [1], Scharstein and"}, {"category_id": 15, "poly": [864.0, 1224.0, 1566.0, 1224.0, 1566.0, 1254.0, 864.0, 1254.0], "score": 0.99, "text": "Szeliski classify stereo algorithms as local or global meth-"}, {"category_id": 15, "poly": [859.0, 1249.0, 1571.0, 1254.0, 1570.0, 1293.0, 859.0, 1288.0], "score": 0.99, "text": " ods. Global methods, which offer outstanding accuracy, are"}, {"category_id": 15, "poly": [862.0, 1288.0, 1571.0, 1288.0, 1571.0, 1327.0, 862.0, 1327.0], "score": 0.98, "text": "typically derived from an energy minimization framework"}, {"category_id": 15, "poly": [859.0, 1322.0, 1566.0, 1322.0, 1566.0, 1352.0, 859.0, 1352.0], "score": 0.99, "text": "that allows for explicit integration of disparity smoothness"}, {"category_id": 15, "poly": [864.0, 1357.0, 1568.0, 1357.0, 1568.0, 1389.0, 864.0, 1389.0], "score": 0.99, "text": "constraints and thus is capable of regularizing the solution"}, {"category_id": 15, "poly": [864.0, 1391.0, 1568.0, 1391.0, 1568.0, 1421.0, 864.0, 1421.0], "score": 1.0, "text": "in weakly textured areas. The minimization, however, is often"}, {"category_id": 15, "poly": [864.0, 1423.0, 1568.0, 1423.0, 1568.0, 1455.0, 864.0, 1455.0], "score": 0.99, "text": "achieved using iterative methods or graph cuts, which do not"}, {"category_id": 15, "poly": [864.0, 1458.0, 1418.0, 1458.0, 1418.0, 1487.0, 864.0, 1487.0], "score": 0.99, "text": "lend themselves well to parallel implementation."}, {"category_id": 15, "poly": [155.0, 1650.0, 839.0, 1652.0, 838.0, 1691.0, 155.0, 1689.0], "score": 0.97, "text": " Stereo matching is the process of identifying correspon-"}, {"category_id": 15, "poly": [134.0, 1687.0, 838.0, 1687.0, 838.0, 1719.0, 134.0, 1719.0], "score": 0.99, "text": "dences between pixels in stereo images obtained using a"}, {"category_id": 15, "poly": [132.0, 1723.0, 838.0, 1721.0, 838.0, 1753.0, 132.0, 1755.0], "score": 0.98, "text": "pair of synchronized cameras. These correspondences are"}, {"category_id": 15, "poly": [134.0, 1755.0, 836.0, 1755.0, 836.0, 1788.0, 134.0, 1788.0], "score": 0.99, "text": "conveniently represented using the notion of disparity, i.e. the"}, {"category_id": 15, "poly": [134.0, 1788.0, 836.0, 1788.0, 836.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "positional offset between two matching pixels. It is assumed"}, {"category_id": 15, "poly": [134.0, 1822.0, 836.0, 1822.0, 836.0, 1854.0, 134.0, 1854.0], "score": 0.99, "text": "that the stereo images are rectified, such that matching pixels"}, {"category_id": 15, "poly": [132.0, 1854.0, 836.0, 1854.0, 836.0, 1886.0, 132.0, 1886.0], "score": 0.99, "text": "are confined within corresponding rows of the images and"}, {"category_id": 15, "poly": [134.0, 1888.0, 838.0, 1888.0, 838.0, 1918.0, 134.0, 1918.0], "score": 1.0, "text": "thus disparities are restricted to the horizontal dimension, as"}, {"category_id": 15, "poly": [134.0, 1920.0, 838.0, 1920.0, 838.0, 1952.0, 134.0, 1952.0], "score": 1.0, "text": "illustrated in Figure 1. For visualization purposes, disparities"}, {"category_id": 15, "poly": [134.0, 1955.0, 838.0, 1955.0, 838.0, 1987.0, 134.0, 1987.0], "score": 0.99, "text": "recovered for every pixel of a reference image are stored"}, {"category_id": 15, "poly": [129.0, 1985.0, 841.0, 1982.0, 841.0, 2021.0, 129.0, 2024.0], "score": 0.98, "text": "together in the form of an image, which is known as the"}, {"category_id": 15, "poly": [370.0, 885.0, 594.0, 885.0, 594.0, 917.0, 370.0, 917.0], "score": 1.0, "text": "1. INTRODUCTION"}, {"category_id": 15, "poly": [638.0, 2099.0, 1062.0, 2099.0, 1062.0, 2131.0, 638.0, 2131.0], "score": 0.98, "text": "978-1-4673-5208-6/13/$31.00 @2013 IEEE"}, {"category_id": 15, "poly": [374.0, 1613.0, 591.0, 1613.0, 591.0, 1645.0, 374.0, 1645.0], "score": 0.95, "text": "II. BACKGROUND"}, {"category_id": 15, "poly": [859.0, 992.0, 1571.0, 995.0, 1571.0, 1034.0, 859.0, 1031.0], "score": 0.99, "text": " Figure 1: Geometry of two horizontally aligned views where p"}, {"category_id": 15, "poly": [864.0, 1098.0, 1291.0, 1098.0, 1291.0, 1130.0, 864.0, 1130.0], "score": 0.99, "text": "them along the horizontal dimension."}, {"category_id": 15, "poly": [859.0, 1061.0, 1194.0, 1059.0, 1194.0, 1098.0, 859.0, 1100.0], "score": 0.98, "text": " pixel in the target frame, and"}, {"category_id": 15, "poly": [1227.0, 1061.0, 1571.0, 1059.0, 1571.0, 1098.0, 1227.0, 1100.0], "score": 0.97, "text": " denotes the disparity between"}, {"category_id": 15, "poly": [864.0, 1034.0, 1303.0, 1034.0, 1303.0, 1063.0, 864.0, 1063.0], "score": 0.99, "text": "denotes a pixel in the reference frame,"}, {"category_id": 15, "poly": [1328.0, 1034.0, 1566.0, 1034.0, 1566.0, 1063.0, 1328.0, 1063.0], "score": 0.96, "text": " denotes its matching"}, {"category_id": 15, "poly": [508.0, 357.0, 1194.0, 360.0, 1194.0, 392.0, 508.0, 390.0], "score": 0.98, "text": "Jedrzej Kowalczuk, Eric T. Psota, and Lance C. P\u00e9rez"}, {"category_id": 15, "poly": [443.0, 392.0, 1245.0, 392.0, 1245.0, 424.0, 443.0, 424.0], "score": 0.99, "text": "Department of Electrical Engineering, University of Nebraska-Lincoln"}, {"category_id": 15, "poly": [614.0, 435.0, 1081.0, 435.0, 1081.0, 465.0, 614.0, 465.0], "score": 0.99, "text": "[jkowalczuk2,epsota,lperez] @unl.edu"}, {"category_id": 15, "poly": [159.0, 527.0, 836.0, 527.0, 836.0, 559.0, 159.0, 559.0], "score": 0.98, "text": "Abstract-Stereo matching algorithms are nearly always de-"}, {"category_id": 15, "poly": [132.0, 555.0, 838.0, 555.0, 838.0, 587.0, 132.0, 587.0], "score": 0.98, "text": "signed to find matches between a single pair of images. A method"}, {"category_id": 15, "poly": [134.0, 580.0, 836.0, 580.0, 836.0, 612.0, 134.0, 612.0], "score": 1.0, "text": "is presented that was specifically designed to operate on sequences"}, {"category_id": 15, "poly": [132.0, 605.0, 838.0, 607.0, 838.0, 646.0, 132.0, 644.0], "score": 0.99, "text": "of images. This method considers the cost of matching image"}, {"category_id": 15, "poly": [132.0, 637.0, 838.0, 637.0, 838.0, 669.0, 132.0, 669.0], "score": 0.98, "text": "points in both the spatial and temporal domain. To maintain"}, {"category_id": 15, "poly": [134.0, 667.0, 838.0, 667.0, 838.0, 699.0, 134.0, 699.0], "score": 0.97, "text": "real-time operation, a temporal cost aggregation method is used"}, {"category_id": 15, "poly": [132.0, 692.0, 836.0, 692.0, 836.0, 722.0, 132.0, 722.0], "score": 0.98, "text": "to evaluate the likelihood of matches that is invariant with respect"}, {"category_id": 15, "poly": [127.0, 717.0, 841.0, 715.0, 841.0, 754.0, 127.0, 756.0], "score": 0.97, "text": "to the number of prior images being considered. This method"}, {"category_id": 15, "poly": [127.0, 742.0, 841.0, 745.0, 841.0, 784.0, 127.0, 781.0], "score": 0.98, "text": "has been implemented on massively parallel GPU hardware,"}, {"category_id": 15, "poly": [132.0, 777.0, 838.0, 777.0, 838.0, 809.0, 132.0, 809.0], "score": 0.99, "text": "and the implementation ranks as one of the fastest and most"}, {"category_id": 15, "poly": [132.0, 802.0, 838.0, 804.0, 838.0, 836.0, 132.0, 834.0], "score": 0.99, "text": "accurate real-time stereo matching methods as measured by the"}, {"category_id": 15, "poly": [134.0, 830.0, 619.0, 830.0, 619.0, 862.0, 134.0, 862.0], "score": 0.99, "text": "Middlebury stereo performance benchmark."}, {"category_id": 15, "poly": [887.0, 1849.0, 1568.0, 1852.0, 1568.0, 1891.0, 887.0, 1888.0], "score": 0.99, "text": " Disparity maps obtained using this simple strategy are often"}, {"category_id": 15, "poly": [862.0, 1888.0, 1568.0, 1888.0, 1568.0, 1920.0, 862.0, 1920.0], "score": 0.98, "text": "too noisy to be considered useable. To reduce the effects"}, {"category_id": 15, "poly": [864.0, 1923.0, 1568.0, 1923.0, 1568.0, 1952.0, 864.0, 1952.0], "score": 0.99, "text": "of noise and enforce spatial consistency of matches, local"}, {"category_id": 15, "poly": [862.0, 1948.0, 1568.0, 1950.0, 1568.0, 1989.0, 861.0, 1987.0], "score": 0.99, "text": "stereo algorithms consider arbitrarily shaped and sized support"}, {"category_id": 15, "poly": [864.0, 1989.0, 1568.0, 1989.0, 1568.0, 2021.0, 864.0, 2021.0], "score": 0.99, "text": "windows centered at each pixel of the reference image, and"}], "page_info": {"page_no": 0, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 8, "poly": [962.3624267578125, 1513.2073974609375, 1465.4017333984375, 1513.2073974609375, 1465.4017333984375, 1669.1397705078125, 962.3624267578125, 1669.1397705078125], "score": 0.9999995231628418}, {"category_id": 9, "poly": [1530.72998046875, 1101.879638671875, 1565.2568359375, 1101.879638671875, 1565.2568359375, 1130.8609619140625, 1530.72998046875, 1130.8609619140625], "score": 0.9999992251396179}, {"category_id": 9, "poly": [1529.8787841796875, 1575.843505859375, 1565.931396484375, 1575.843505859375, 1565.931396484375, 1607.2161865234375, 1529.8787841796875, 1607.2161865234375], "score": 0.9999987483024597}, {"category_id": 1, "poly": [865.1971435546875, 1684.040283203125, 1566.561279296875, 1684.040283203125, 1566.561279296875, 1813.7021484375, 865.1971435546875, 1813.7021484375], "score": 0.9999987483024597}, {"category_id": 9, "poly": [1530.5263671875, 1839.3990478515625, 1565.1201171875, 1839.3990478515625, 1565.1201171875, 1869.825439453125, 1530.5263671875, 1869.825439453125], "score": 0.9999977946281433}, {"category_id": 8, "poly": [972.3255004882812, 1075.85498046875, 1461.2088623046875, 1075.85498046875, 1461.2088623046875, 1155.465087890625, 972.3255004882812, 1155.465087890625], "score": 0.999996542930603}, {"category_id": 1, "poly": [865.4874267578125, 158.47100830078125, 1565.84375, 158.47100830078125, 1565.84375, 355.3230285644531, 865.4874267578125, 355.3230285644531], "score": 0.9999960660934448}, {"category_id": 1, "poly": [133.51382446289062, 158.21670532226562, 835.5382080078125, 158.21670532226562, 835.5382080078125, 558.8020629882812, 133.51382446289062, 558.8020629882812], "score": 0.9999951124191284}, {"category_id": 1, "poly": [134.01239013671875, 954.4151000976562, 836.1470336914062, 954.4151000976562, 836.1470336914062, 1618.77197265625, 134.01239013671875, 1618.77197265625], "score": 0.9999947547912598}, {"category_id": 1, "poly": [134.4542999267578, 558.8201904296875, 834.2548828125, 558.8201904296875, 834.2548828125, 954.7811279296875, 134.4542999267578, 954.7811279296875], "score": 0.9999943971633911}, {"category_id": 1, "poly": [866.33642578125, 421.84442138671875, 1566.451904296875, 421.84442138671875, 1566.451904296875, 787.1864624023438, 866.33642578125, 787.1864624023438], "score": 0.9999930262565613}, {"category_id": 1, "poly": [864.974853515625, 1167.92236328125, 1567.0927734375, 1167.92236328125, 1567.0927734375, 1298.29541015625, 864.974853515625, 1298.29541015625], "score": 0.9999929666519165}, {"category_id": 1, "poly": [864.5220947265625, 853.943359375, 1565.82080078125, 853.943359375, 1565.82080078125, 1080.8125, 864.5220947265625, 1080.8125], "score": 0.9999923706054688}, {"category_id": 1, "poly": [865.4466552734375, 1919.30615234375, 1566.4720458984375, 1919.30615234375, 1566.4720458984375, 2017.154541015625, 865.4466552734375, 2017.154541015625], "score": 0.9999904036521912}, {"category_id": 1, "poly": [864.801513671875, 1302.438232421875, 1566.760986328125, 1302.438232421875, 1566.760986328125, 1498.9681396484375, 864.801513671875, 1498.9681396484375], "score": 0.9999889135360718}, {"category_id": 1, "poly": [133.34628295898438, 1620.0596923828125, 836.7553100585938, 1620.0596923828125, 836.7553100585938, 2018.44873046875, 133.34628295898438, 2018.44873046875], "score": 0.9999861717224121}, {"category_id": 0, "poly": [865.5296020507812, 809.8997802734375, 1302.7711181640625, 809.8997802734375, 1302.7711181640625, 841.3140869140625, 865.5296020507812, 841.3140869140625], "score": 0.9999798536300659}, {"category_id": 0, "poly": [1131.11181640625, 378.66229248046875, 1299.6181640625, 378.66229248046875, 1299.6181640625, 409.04852294921875, 1131.11181640625, 409.04852294921875], "score": 0.9999651908874512}, {"category_id": 8, "poly": [1003.5569458007812, 1824.2362060546875, 1420.7132568359375, 1824.2362060546875, 1420.7132568359375, 1905.175048828125, 1003.5569458007812, 1905.175048828125], "score": 0.999914288520813}, {"category_id": 14, "poly": [974, 1076, 1454, 1076, 1454, 1155, 974, 1155], "score": 0.94, "latex": "w(p,q)=\\exp{\\left(-\\frac{\\Delta_{g}(p,q)}{\\gamma_{g}}-\\frac{\\Delta_{c}(p,q)}{\\gamma_{c}}\\right)},"}, {"category_id": 14, "poly": [1006, 1825, 1423, 1825, 1423, 1907, 1006, 1907], "score": 0.94, "latex": "\\delta(q,\\bar{q})=\\sum_{c=\\{r,g,b\\}}\\operatorname*{min}(|q_{c}-\\bar{q}_{c}|,\\tau)."}, {"category_id": 14, "poly": [963, 1510, 1464, 1510, 1464, 1671, 963, 1671], "score": 0.93, "latex": "C(p,\\bar{p})=\\frac{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})\\delta(q,\\bar{q})}{\\displaystyle\\sum_{q\\in\\Omega_{p},\\bar{q}\\in\\Omega_{\\bar{p}}}w(p,q)w(\\bar{p},\\bar{q})}\\,,"}, {"category_id": 13, "poly": [1335, 1166, 1432, 1166, 1432, 1200, 1335, 1200], "score": 0.93, "latex": "\\Delta_{c}(p,q)"}, {"category_id": 13, "poly": [939, 1166, 1039, 1166, 1039, 1201, 939, 1201], "score": 0.93, "latex": "\\Delta_{g}(p,q)"}, {"category_id": 13, "poly": [1289, 1683, 1365, 1683, 1365, 1717, 1289, 1717], "score": 0.93, "latex": "\\delta(q,\\bar{q})"}, {"category_id": 13, "poly": [1362, 1367, 1441, 1367, 1441, 1401, 1362, 1401], "score": 0.92, "latex": "\\bar{p}\\in S_{p}"}, {"category_id": 13, "poly": [864, 1019, 951, 1019, 951, 1053, 864, 1053], "score": 0.92, "latex": "q\\in\\Omega_{p}"}, {"category_id": 13, "poly": [1351, 953, 1388, 953, 1388, 987, 1351, 987], "score": 0.9, "latex": "\\Omega_{p}"}, {"category_id": 13, "poly": [913, 1467, 949, 1467, 949, 1501, 913, 1501], "score": 0.89, "latex": "\\Omega_{\\bar{p}}"}, {"category_id": 13, "poly": [1531, 1367, 1565, 1367, 1565, 1401, 1531, 1401], "score": 0.89, "latex": "S_{p}"}, {"category_id": 13, "poly": [1528, 1434, 1565, 1434, 1565, 1468, 1528, 1468], "score": 0.89, "latex": "\\Omega_{p}"}, {"category_id": 13, "poly": [1485, 1205, 1516, 1205, 1516, 1234, 1485, 1234], "score": 0.88, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [1159, 1206, 1178, 1206, 1178, 1233, 1159, 1233], "score": 0.82, "latex": "p"}, {"category_id": 13, "poly": [863, 1238, 893, 1238, 893, 1266, 863, 1266], "score": 0.82, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [1177, 1436, 1196, 1436, 1196, 1465, 1177, 1465], "score": 0.8, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [1371, 1024, 1391, 1024, 1391, 1051, 1371, 1051], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [1540, 1406, 1558, 1406, 1558, 1432, 1540, 1432], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [1447, 1024, 1465, 1024, 1465, 1051, 1447, 1051], "score": 0.79, "latex": "q"}, {"category_id": 13, "poly": [1101, 1437, 1121, 1437, 1121, 1465, 1101, 1465], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [1389, 1307, 1407, 1307, 1407, 1332, 1389, 1332], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [1230, 1206, 1247, 1206, 1247, 1233, 1230, 1233], "score": 0.78, "latex": "q"}, {"category_id": 13, "poly": [1029, 1372, 1048, 1372, 1048, 1399, 1029, 1399], "score": 0.78, "latex": "p"}, {"category_id": 13, "poly": [916, 1752, 934, 1752, 934, 1782, 916, 1782], "score": 0.76, "latex": "\\bar{q}"}, {"category_id": 13, "poly": [1407, 1925, 1425, 1925, 1425, 1946, 1407, 1946], "score": 0.75, "latex": "\\tau"}, {"category_id": 13, "poly": [1548, 1722, 1565, 1722, 1565, 1749, 1548, 1749], "score": 0.75, "latex": "q"}, {"category_id": 13, "poly": [1050, 992, 1068, 992, 1068, 1018, 1050, 1018], "score": 0.75, "latex": "p"}, {"category_id": 15, "poly": [864.0, 1783.0, 1298.0, 1783.0, 1298.0, 1822.0, 864.0, 1822.0], "score": 0.99, "text": "green, and blue components given by"}, {"category_id": 15, "poly": [866.0, 1687.0, 1288.0, 1687.0, 1288.0, 1719.0, 866.0, 1719.0], "score": 0.96, "text": "where the pixel dissimilarity metric"}, {"category_id": 15, "poly": [1366.0, 1687.0, 1564.0, 1687.0, 1564.0, 1719.0, 1366.0, 1719.0], "score": 0.97, "text": "ischosen as the"}, {"category_id": 15, "poly": [866.0, 1751.0, 915.0, 1751.0, 915.0, 1783.0, 866.0, 1783.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [935.0, 1751.0, 1564.0, 1751.0, 1564.0, 1783.0, 935.0, 1783.0], "score": 0.98, "text": ". Here, the truncation of color difference for the red,"}, {"category_id": 15, "poly": [866.0, 1719.0, 1547.0, 1719.0, 1547.0, 1749.0, 866.0, 1749.0], "score": 0.99, "text": "sum of truncated absolute color differences between pixels"}, {"category_id": 15, "poly": [864.0, 163.0, 1568.0, 163.0, 1568.0, 192.0, 864.0, 192.0], "score": 1.0, "text": "temporal information, making it possible to process a temporal"}, {"category_id": 15, "poly": [859.0, 188.0, 1571.0, 193.0, 1570.0, 229.0, 859.0, 225.0], "score": 0.99, "text": " collection of cost volumes. The filtering operation was shown"}, {"category_id": 15, "poly": [864.0, 229.0, 1566.0, 229.0, 1566.0, 261.0, 864.0, 261.0], "score": 0.99, "text": "to preserve spatio-temporal edges present in the cost volumes,"}, {"category_id": 15, "poly": [859.0, 261.0, 1564.0, 264.0, 1564.0, 296.0, 859.0, 293.0], "score": 0.98, "text": " resulting in increased temporal consistency of disparity maps,"}, {"category_id": 15, "poly": [864.0, 296.0, 1566.0, 296.0, 1566.0, 328.0, 864.0, 328.0], "score": 0.99, "text": "greater robustness to image noise, and more accurate behavior"}, {"category_id": 15, "poly": [866.0, 328.0, 1160.0, 328.0, 1160.0, 360.0, 866.0, 360.0], "score": 1.0, "text": "around object boundaries."}, {"category_id": 15, "poly": [129.0, 158.0, 841.0, 153.0, 841.0, 192.0, 130.0, 197.0], "score": 0.99, "text": "aggregate cost values within the pixel neighborhoods defined"}, {"category_id": 15, "poly": [129.0, 188.0, 841.0, 190.0, 841.0, 229.0, 129.0, 227.0], "score": 0.99, "text": "by these windows. In 2005, Yoon and Kweon [4] proposed"}, {"category_id": 15, "poly": [132.0, 229.0, 838.0, 229.0, 838.0, 261.0, 132.0, 261.0], "score": 1.0, "text": "an adaptive matching cost aggregation scheme, which assigns"}, {"category_id": 15, "poly": [132.0, 261.0, 838.0, 261.0, 838.0, 293.0, 132.0, 293.0], "score": 0.98, "text": "a weight value to every pixel located in the support window"}, {"category_id": 15, "poly": [132.0, 293.0, 838.0, 293.0, 838.0, 325.0, 132.0, 325.0], "score": 0.98, "text": "of a given pixel of interest. The weight value is based on"}, {"category_id": 15, "poly": [132.0, 328.0, 836.0, 328.0, 836.0, 360.0, 132.0, 360.0], "score": 0.99, "text": "the spatial and color similarity between the pixel of interest"}, {"category_id": 15, "poly": [134.0, 360.0, 836.0, 360.0, 836.0, 392.0, 134.0, 392.0], "score": 1.0, "text": "and a pixel in its support window, and the aggregated cost is"}, {"category_id": 15, "poly": [134.0, 394.0, 836.0, 394.0, 836.0, 426.0, 134.0, 426.0], "score": 0.99, "text": "computed as a weighted average of the pixel-wise costs within"}, {"category_id": 15, "poly": [127.0, 422.0, 839.0, 424.0, 838.0, 463.0, 127.0, 461.0], "score": 0.98, "text": " the considered support window. The edge-preserving nature"}, {"category_id": 15, "poly": [129.0, 456.0, 838.0, 454.0, 838.0, 493.0, 129.0, 495.0], "score": 0.99, "text": " and matching accuracy of adaptive support weights have made"}, {"category_id": 15, "poly": [132.0, 490.0, 841.0, 490.0, 841.0, 529.0, 132.0, 529.0], "score": 0.99, "text": "them one of the most popular choices for cost aggregation in"}, {"category_id": 15, "poly": [132.0, 527.0, 797.0, 527.0, 797.0, 559.0, 132.0, 559.0], "score": 0.97, "text": "recently proposed stereo matching algorithms [3], [5]-[8]."}, {"category_id": 15, "poly": [157.0, 958.0, 836.0, 958.0, 836.0, 988.0, 157.0, 988.0], "score": 0.99, "text": "It has been demonstrated that the performance of stereo"}, {"category_id": 15, "poly": [132.0, 990.0, 838.0, 990.0, 838.0, 1022.0, 132.0, 1022.0], "score": 0.99, "text": "algorithms designed to match a single pair of images can"}, {"category_id": 15, "poly": [132.0, 1024.0, 836.0, 1024.0, 836.0, 1056.0, 132.0, 1056.0], "score": 0.99, "text": "be adapted to take advantage of the temporal dependencies"}, {"category_id": 15, "poly": [129.0, 1054.0, 838.0, 1054.0, 838.0, 1093.0, 129.0, 1093.0], "score": 0.97, "text": "available in stereo video sequences. Early proposed solutions"}, {"category_id": 15, "poly": [132.0, 1091.0, 836.0, 1091.0, 836.0, 1123.0, 132.0, 1123.0], "score": 0.99, "text": "to temporal stereo matching attempted to average matching"}, {"category_id": 15, "poly": [134.0, 1123.0, 836.0, 1123.0, 836.0, 1155.0, 134.0, 1155.0], "score": 0.99, "text": "costs across subsequent frames of a video sequence [13],"}, {"category_id": 15, "poly": [129.0, 1153.0, 841.0, 1150.0, 841.0, 1189.0, 129.0, 1192.0], "score": 0.98, "text": "[14]. Attempts have been made to integrate estimation of"}, {"category_id": 15, "poly": [134.0, 1192.0, 838.0, 1192.0, 838.0, 1224.0, 134.0, 1224.0], "score": 0.99, "text": "motion fields (optical flow) into temporal stereo matching. The"}, {"category_id": 15, "poly": [132.0, 1224.0, 838.0, 1224.0, 838.0, 1256.0, 132.0, 1256.0], "score": 0.99, "text": "methods of [15] and [16] perform smoothing of disparities"}, {"category_id": 15, "poly": [129.0, 1254.0, 841.0, 1254.0, 841.0, 1292.0, 129.0, 1292.0], "score": 0.99, "text": " along motion vectors recovered from the video sequence. The"}, {"category_id": 15, "poly": [132.0, 1290.0, 838.0, 1290.0, 838.0, 1322.0, 132.0, 1322.0], "score": 0.99, "text": "estimation of the motion field, however, prevents real-time"}, {"category_id": 15, "poly": [132.0, 1325.0, 838.0, 1325.0, 838.0, 1354.0, 132.0, 1354.0], "score": 0.99, "text": "implementation, since state-of-the-art optical flow algorithms"}, {"category_id": 15, "poly": [129.0, 1354.0, 841.0, 1354.0, 841.0, 1393.0, 129.0, 1393.0], "score": 0.99, "text": " do not, in general, approach real-time frame rates. In a related"}, {"category_id": 15, "poly": [129.0, 1386.0, 841.0, 1384.0, 841.0, 1423.0, 129.0, 1425.0], "score": 0.99, "text": "approach, Sizintsev and Wildes [17], [18] used steerable"}, {"category_id": 15, "poly": [134.0, 1423.0, 836.0, 1423.0, 836.0, 1455.0, 134.0, 1455.0], "score": 0.99, "text": "filters to obtain descriptors characterizing motion of image"}, {"category_id": 15, "poly": [134.0, 1455.0, 836.0, 1455.0, 836.0, 1487.0, 134.0, 1487.0], "score": 0.99, "text": "features in both space and time. Unlike traditional algorithms,"}, {"category_id": 15, "poly": [132.0, 1490.0, 838.0, 1490.0, 838.0, 1522.0, 132.0, 1522.0], "score": 0.98, "text": "their method performs matching on spatio-temporal motion"}, {"category_id": 15, "poly": [129.0, 1519.0, 841.0, 1517.0, 841.0, 1556.0, 129.0, 1558.0], "score": 0.99, "text": " descriptors, rather than on pure pixel intensity values, which"}, {"category_id": 15, "poly": [132.0, 1554.0, 841.0, 1554.0, 841.0, 1593.0, 132.0, 1593.0], "score": 0.99, "text": "leads to improved temporal coherence of disparity maps at the"}, {"category_id": 15, "poly": [132.0, 1586.0, 698.0, 1586.0, 698.0, 1618.0, 132.0, 1618.0], "score": 0.99, "text": "cost of reduced accuracy at depth discontinuities."}, {"category_id": 15, "poly": [159.0, 559.0, 838.0, 559.0, 838.0, 591.0, 159.0, 591.0], "score": 0.99, "text": "Recently, Rheman et al. [9], [10] have revisited the cost"}, {"category_id": 15, "poly": [132.0, 594.0, 838.0, 589.0, 839.0, 621.0, 132.0, 626.0], "score": 1.0, "text": "aggregation step of stereo algorithms, and demonstrated that"}, {"category_id": 15, "poly": [132.0, 626.0, 838.0, 626.0, 838.0, 658.0, 132.0, 658.0], "score": 0.99, "text": "cost aggregation can be performed by filtering of subsequent"}, {"category_id": 15, "poly": [134.0, 660.0, 834.0, 660.0, 834.0, 692.0, 134.0, 692.0], "score": 1.0, "text": "layers of the initially computed matching cost volume. In par-"}, {"category_id": 15, "poly": [132.0, 692.0, 836.0, 692.0, 836.0, 724.0, 132.0, 724.0], "score": 0.99, "text": "ticular, the edge-aware image filters, such as the bilateral filter"}, {"category_id": 15, "poly": [127.0, 719.0, 839.0, 724.0, 838.0, 761.0, 127.0, 756.0], "score": 0.99, "text": " of Tomasi and Manducci [11] or the guided filter of He [12],"}, {"category_id": 15, "poly": [132.0, 759.0, 838.0, 759.0, 838.0, 791.0, 132.0, 791.0], "score": 0.98, "text": "have been rendered useful for the problem of matching cost"}, {"category_id": 15, "poly": [132.0, 793.0, 838.0, 791.0, 838.0, 823.0, 132.0, 825.0], "score": 0.99, "text": "aggregation, enabling stereo algorithms to correctly recover"}, {"category_id": 15, "poly": [134.0, 825.0, 838.0, 825.0, 838.0, 857.0, 134.0, 857.0], "score": 0.98, "text": "disparities along object boundaries. In fact, Yoon and Kweon's"}, {"category_id": 15, "poly": [134.0, 859.0, 838.0, 859.0, 838.0, 891.0, 134.0, 891.0], "score": 1.0, "text": "adaptive support-weight cost aggregation scheme is equivalent"}, {"category_id": 15, "poly": [132.0, 891.0, 838.0, 891.0, 838.0, 924.0, 132.0, 924.0], "score": 0.98, "text": "to the application of the so-called joint bilateral filter to the"}, {"category_id": 15, "poly": [134.0, 924.0, 547.0, 924.0, 547.0, 956.0, 134.0, 956.0], "score": 1.0, "text": "layers of the matching cost volume."}, {"category_id": 15, "poly": [889.0, 422.0, 1568.0, 424.0, 1568.0, 456.0, 889.0, 454.0], "score": 0.98, "text": "The proposed temporal stereo matching algorithm is an"}, {"category_id": 15, "poly": [862.0, 456.0, 1571.0, 456.0, 1571.0, 495.0, 862.0, 495.0], "score": 1.0, "text": "extension of the real-time iterative adaptive support-weight"}, {"category_id": 15, "poly": [864.0, 490.0, 1568.0, 490.0, 1568.0, 522.0, 864.0, 522.0], "score": 0.99, "text": "algorithm described in [3]. In addition to real-time two-"}, {"category_id": 15, "poly": [864.0, 525.0, 1566.0, 525.0, 1566.0, 557.0, 864.0, 557.0], "score": 1.0, "text": "pass aggregation of the cost values in the spatial domain,"}, {"category_id": 15, "poly": [864.0, 557.0, 1568.0, 557.0, 1568.0, 589.0, 864.0, 589.0], "score": 0.99, "text": "the proposed algorithm enhances stereo matching on video"}, {"category_id": 15, "poly": [866.0, 594.0, 1566.0, 594.0, 1566.0, 626.0, 866.0, 626.0], "score": 0.97, "text": "sequences by aggregating costs along the time dimension."}, {"category_id": 15, "poly": [864.0, 626.0, 1568.0, 626.0, 1568.0, 658.0, 864.0, 658.0], "score": 1.0, "text": "The operation of the algorithm has been divided into four"}, {"category_id": 15, "poly": [866.0, 660.0, 1568.0, 660.0, 1568.0, 692.0, 866.0, 692.0], "score": 0.99, "text": "stages: 1) two-pass spatial cost aggregation, 2) temporal cost"}, {"category_id": 15, "poly": [862.0, 688.0, 1568.0, 685.0, 1568.0, 724.0, 862.0, 727.0], "score": 1.0, "text": "aggregation, 3) disparity selection and confidence assessment,"}, {"category_id": 15, "poly": [866.0, 724.0, 1568.0, 724.0, 1568.0, 756.0, 866.0, 756.0], "score": 1.0, "text": "and 4) iterative disparity refinement. In the following, each of"}, {"category_id": 15, "poly": [864.0, 759.0, 1254.0, 759.0, 1254.0, 791.0, 864.0, 791.0], "score": 1.0, "text": "these stages is described in detail."}, {"category_id": 15, "poly": [860.0, 1265.0, 1194.0, 1270.0, 1194.0, 1306.0, 859.0, 1301.0], "score": 0.99, "text": " color similarity, respectively."}, {"category_id": 15, "poly": [1433.0, 1169.0, 1566.0, 1169.0, 1566.0, 1201.0, 1433.0, 1201.0], "score": 0.98, "text": "is the color"}, {"category_id": 15, "poly": [864.0, 1169.0, 938.0, 1169.0, 938.0, 1201.0, 864.0, 1201.0], "score": 1.0, "text": "where"}, {"category_id": 15, "poly": [1040.0, 1169.0, 1334.0, 1169.0, 1334.0, 1201.0, 1040.0, 1201.0], "score": 0.98, "text": "is the geometric distance,"}, {"category_id": 15, "poly": [1517.0, 1196.0, 1566.0, 1201.0, 1566.0, 1240.0, 1517.0, 1235.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [862.0, 1196.0, 1158.0, 1201.0, 1158.0, 1240.0, 861.0, 1235.0], "score": 1.0, "text": "difference between pixels"}, {"category_id": 15, "poly": [894.0, 1233.0, 1566.0, 1231.0, 1566.0, 1270.0, 894.0, 1272.0], "score": 0.97, "text": "regulate the strength of grouping by geometric distance and"}, {"category_id": 15, "poly": [1179.0, 1196.0, 1229.0, 1201.0, 1229.0, 1240.0, 1179.0, 1235.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1248.0, 1196.0, 1484.0, 1201.0, 1484.0, 1240.0, 1248.0, 1235.0], "score": 0.99, "text": ", and the coefficients"}, {"category_id": 15, "poly": [887.0, 848.0, 1568.0, 850.0, 1568.0, 889.0, 887.0, 887.0], "score": 0.99, "text": " Humans group shapes by observing the geometric distance"}, {"category_id": 15, "poly": [859.0, 885.0, 1568.0, 882.0, 1568.0, 921.0, 859.0, 924.0], "score": 0.98, "text": " and color similarity of points in space. To mimic this vi-"}, {"category_id": 15, "poly": [864.0, 921.0, 1568.0, 921.0, 1568.0, 953.0, 864.0, 953.0], "score": 0.99, "text": "sual grouping, the adaptive support-weight stereo matching"}, {"category_id": 15, "poly": [864.0, 1054.0, 899.0, 1054.0, 899.0, 1084.0, 864.0, 1084.0], "score": 1.0, "text": "by"}, {"category_id": 15, "poly": [866.0, 956.0, 1350.0, 956.0, 1350.0, 988.0, 866.0, 988.0], "score": 0.98, "text": "algorithm [4] considers a support window"}, {"category_id": 15, "poly": [1389.0, 956.0, 1566.0, 956.0, 1566.0, 988.0, 1389.0, 988.0], "score": 0.98, "text": " centered at the"}, {"category_id": 15, "poly": [952.0, 1022.0, 1370.0, 1022.0, 1370.0, 1054.0, 952.0, 1054.0], "score": 0.98, "text": ". The support weight relating pixels"}, {"category_id": 15, "poly": [1392.0, 1022.0, 1446.0, 1022.0, 1446.0, 1054.0, 1392.0, 1054.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [1466.0, 1022.0, 1566.0, 1022.0, 1566.0, 1054.0, 1466.0, 1054.0], "score": 0.98, "text": "is given"}, {"category_id": 15, "poly": [866.0, 990.0, 1049.0, 990.0, 1049.0, 1022.0, 866.0, 1022.0], "score": 1.0, "text": "pixel of interest"}, {"category_id": 15, "poly": [1069.0, 990.0, 1566.0, 990.0, 1566.0, 1022.0, 1069.0, 1022.0], "score": 1.0, "text": ", and assigns a support weight to each pixel"}, {"category_id": 15, "poly": [862.0, 1948.0, 1568.0, 1950.0, 1568.0, 1989.0, 861.0, 1987.0], "score": 0.98, "text": "vides additional robustness to outliers. Rather than evaluating"}, {"category_id": 15, "poly": [864.0, 1989.0, 1566.0, 1989.0, 1566.0, 2021.0, 864.0, 2021.0], "score": 0.98, "text": "Equation (2) directly, real-time algorithms often approximate"}, {"category_id": 15, "poly": [862.0, 1920.0, 1406.0, 1920.0, 1406.0, 1952.0, 862.0, 1952.0], "score": 0.99, "text": "This limits each of their magnitudes to at most"}, {"category_id": 15, "poly": [1426.0, 1920.0, 1561.0, 1920.0, 1561.0, 1952.0, 1426.0, 1952.0], "score": 0.96, "text": ",whichpro-"}, {"category_id": 15, "poly": [859.0, 1331.0, 1571.0, 1334.0, 1571.0, 1373.0, 859.0, 1370.0], "score": 0.98, "text": " iterative adaptive support-weight algorithm evaluates matching"}, {"category_id": 15, "poly": [859.0, 1464.0, 912.0, 1467.0, 912.0, 1506.0, 859.0, 1503.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [950.0, 1464.0, 1474.0, 1467.0, 1474.0, 1506.0, 950.0, 1503.0], "score": 1.0, "text": ", the initial matching cost is aggregated using"}, {"category_id": 15, "poly": [1442.0, 1370.0, 1530.0, 1370.0, 1530.0, 1402.0, 1442.0, 1402.0], "score": 0.98, "text": ", where"}, {"category_id": 15, "poly": [1197.0, 1437.0, 1527.0, 1437.0, 1527.0, 1469.0, 1197.0, 1469.0], "score": 0.97, "text": ", and their support windows"}, {"category_id": 15, "poly": [866.0, 1402.0, 1539.0, 1402.0, 1539.0, 1435.0, 866.0, 1435.0], "score": 1.0, "text": "denotes a set of matching candidates associated with pixel"}, {"category_id": 15, "poly": [864.0, 1437.0, 1100.0, 1437.0, 1100.0, 1469.0, 864.0, 1469.0], "score": 0.97, "text": "For a pair of pixels"}, {"category_id": 15, "poly": [1122.0, 1437.0, 1176.0, 1437.0, 1176.0, 1469.0, 1122.0, 1469.0], "score": 0.94, "text": " and"}, {"category_id": 15, "poly": [887.0, 1299.0, 1388.0, 1304.0, 1388.0, 1336.0, 887.0, 1331.0], "score": 0.96, "text": " To identify a match for the pixel of interest"}, {"category_id": 15, "poly": [1408.0, 1299.0, 1568.0, 1304.0, 1568.0, 1336.0, 1408.0, 1331.0], "score": 1.0, "text": ", the real-time"}, {"category_id": 15, "poly": [864.0, 1370.0, 1028.0, 1370.0, 1028.0, 1402.0, 864.0, 1402.0], "score": 1.0, "text": "costs between"}, {"category_id": 15, "poly": [1049.0, 1370.0, 1361.0, 1370.0, 1361.0, 1402.0, 1049.0, 1402.0], "score": 0.99, "text": " and every match candidate"}, {"category_id": 15, "poly": [160.0, 1618.0, 836.0, 1623.0, 836.0, 1655.0, 159.0, 1650.0], "score": 0.99, "text": "Most recently, local stereo algorithms based on edge-aware"}, {"category_id": 15, "poly": [127.0, 1650.0, 841.0, 1652.0, 841.0, 1691.0, 127.0, 1689.0], "score": 0.97, "text": " filters were extended to incorporate temporal evidence into"}, {"category_id": 15, "poly": [132.0, 1687.0, 836.0, 1687.0, 836.0, 1719.0, 132.0, 1719.0], "score": 0.97, "text": "the matching process. The method of Richardt et al. [19]"}, {"category_id": 15, "poly": [134.0, 1723.0, 838.0, 1723.0, 838.0, 1753.0, 134.0, 1753.0], "score": 0.99, "text": "employs a variant of the bilateral grid [20] implemented on"}, {"category_id": 15, "poly": [134.0, 1755.0, 838.0, 1755.0, 838.0, 1788.0, 134.0, 1788.0], "score": 0.99, "text": "graphics hardware, which accelerates cost aggregation and"}, {"category_id": 15, "poly": [134.0, 1788.0, 838.0, 1788.0, 838.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "allows for weighted propagation of pixel dissimilarity metrics"}, {"category_id": 15, "poly": [132.0, 1822.0, 838.0, 1822.0, 838.0, 1854.0, 132.0, 1854.0], "score": 0.99, "text": "from previous frames to the current one. Although this method"}, {"category_id": 15, "poly": [129.0, 1856.0, 838.0, 1856.0, 838.0, 1888.0, 129.0, 1888.0], "score": 1.0, "text": " outperforms the baseline frame-to-frame approach, the amount"}, {"category_id": 15, "poly": [132.0, 1888.0, 838.0, 1888.0, 838.0, 1920.0, 132.0, 1920.0], "score": 0.97, "text": "of hardware memory necessary to construct the bilateral grid"}, {"category_id": 15, "poly": [127.0, 1916.0, 841.0, 1918.0, 841.0, 1957.0, 127.0, 1955.0], "score": 0.99, "text": "limits its application to single-channel, i.e., grayscale images "}, {"category_id": 15, "poly": [132.0, 1955.0, 838.0, 1955.0, 838.0, 1985.0, 132.0, 1985.0], "score": 0.99, "text": "only. Hosni et al. [10], on the other hand, reformulated kernels"}, {"category_id": 15, "poly": [132.0, 1989.0, 838.0, 1989.0, 838.0, 2021.0, 132.0, 2021.0], "score": 0.99, "text": "of the guided image filter to operate on both spatial and"}, {"category_id": 15, "poly": [859.0, 809.0, 1307.0, 809.0, 1307.0, 848.0, 859.0, 848.0], "score": 0.99, "text": "A. Two-Pass Spatial Cost Aggregation"}, {"category_id": 15, "poly": [1129.0, 376.0, 1300.0, 376.0, 1300.0, 417.0, 1129.0, 417.0], "score": 0.94, "text": "III. METHOD"}], "page_info": {"page_no": 1, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [865.5088500976562, 856.5537109375, 1567.692626953125, 856.5537109375, 1567.692626953125, 1420.9698486328125, 865.5088500976562, 1420.9698486328125], "score": 0.9999963045120239}, {"category_id": 8, "poly": [281.1294860839844, 1001.0513916015625, 689.37451171875, 1001.0513916015625, 689.37451171875, 1075.8765869140625, 281.1294860839844, 1075.8765869140625], "score": 0.9999961256980896}, {"category_id": 1, "poly": [133.53353881835938, 158.6427459716797, 836.7297973632812, 158.6427459716797, 836.7297973632812, 390.48828125, 133.53353881835938, 390.48828125], "score": 0.9999960660934448}, {"category_id": 8, "poly": [145.77777099609375, 1839.6416015625, 803.4192504882812, 1839.6416015625, 803.4192504882812, 1993.239013671875, 145.77777099609375, 1993.239013671875], "score": 0.9999958872795105}, {"category_id": 1, "poly": [864.9884643554688, 1420.8831787109375, 1567.3118896484375, 1420.8831787109375, 1567.3118896484375, 2023.257080078125, 864.9884643554688, 2023.257080078125], "score": 0.9999951124191284}, {"category_id": 9, "poly": [1529.267333984375, 388.6717834472656, 1565.1744384765625, 388.6717834472656, 1565.1744384765625, 416.4899597167969, 1529.267333984375, 416.4899597167969], "score": 0.9999918937683105}, {"category_id": 9, "poly": [800.3933715820312, 1551.524169921875, 833.2618408203125, 1551.524169921875, 833.2618408203125, 1582.073486328125, 800.3933715820312, 1582.073486328125], "score": 0.9999911189079285}, {"category_id": 1, "poly": [864.3720092773438, 200.97483825683594, 1565.6871337890625, 200.97483825683594, 1565.6871337890625, 365.6230163574219, 864.3720092773438, 365.6230163574219], "score": 0.9999903440475464}, {"category_id": 1, "poly": [134.87628173828125, 1369.5762939453125, 835.0336303710938, 1369.5762939453125, 835.0336303710938, 1533.884765625, 134.87628173828125, 1533.884765625], "score": 0.9999880790710449}, {"category_id": 1, "poly": [134.59988403320312, 444.5299377441406, 836.5606079101562, 444.5299377441406, 836.5606079101562, 709.0791015625, 134.59988403320312, 709.0791015625], "score": 0.999987006187439}, {"category_id": 1, "poly": [134.15472412109375, 1084.4288330078125, 836.2360229492188, 1084.4288330078125, 836.2360229492188, 1314.6600341796875, 134.15472412109375, 1314.6600341796875], "score": 0.9999866485595703}, {"category_id": 9, "poly": [800.6007690429688, 1023.1047973632812, 833.2154541015625, 1023.1047973632812, 833.2154541015625, 1055.7227783203125, 800.6007690429688, 1055.7227783203125], "score": 0.9999839663505554}, {"category_id": 8, "poly": [948.4016723632812, 372.03607177734375, 1486.11279296875, 372.03607177734375, 1486.11279296875, 449.3696594238281, 948.4016723632812, 449.3696594238281], "score": 0.9999831914901733}, {"category_id": 8, "poly": [145.31065368652344, 714.4036254882812, 820.3599853515625, 714.4036254882812, 820.3599853515625, 791.855712890625, 145.31065368652344, 791.855712890625], "score": 0.9999772906303406}, {"category_id": 1, "poly": [863.8760986328125, 599.6033325195312, 1566.84619140625, 599.6033325195312, 1566.84619140625, 797.44189453125, 863.8760986328125, 797.44189453125], "score": 0.999976396560669}, {"category_id": 1, "poly": [864.925537109375, 464.9669189453125, 1565.212158203125, 464.9669189453125, 1565.212158203125, 529.045654296875, 864.925537109375, 529.045654296875], "score": 0.999973475933075}, {"category_id": 1, "poly": [133.88735961914062, 797.7457885742188, 835.5986328125, 797.7457885742188, 835.5986328125, 994.4456176757812, 133.88735961914062, 994.4456176757812], "score": 0.9999661445617676}, {"category_id": 1, "poly": [134.8787841796875, 1615.116455078125, 835.4554443359375, 1615.116455078125, 835.4554443359375, 1815.4564208984375, 134.8787841796875, 1815.4564208984375], "score": 0.9999580383300781}, {"category_id": 9, "poly": [1530.1783447265625, 550.1576538085938, 1564.607177734375, 550.1576538085938, 1564.607177734375, 578.6950073242188, 1530.1783447265625, 578.6950073242188], "score": 0.9999532103538513}, {"category_id": 9, "poly": [801.0740966796875, 738.4259643554688, 834.7449340820312, 738.4259643554688, 834.7449340820312, 770.4969482421875, 801.0740966796875, 770.4969482421875], "score": 0.9996598958969116}, {"category_id": 0, "poly": [1134.302490234375, 815.6021728515625, 1295.3885498046875, 815.6021728515625, 1295.3885498046875, 844.6544799804688, 1134.302490234375, 844.6544799804688], "score": 0.9994980096817017}, {"category_id": 9, "poly": [798.6090698242188, 1986.7332763671875, 834.5460205078125, 1986.7332763671875, 834.5460205078125, 2017.6595458984375, 798.6090698242188, 2017.6595458984375], "score": 0.9992558360099792}, {"category_id": 0, "poly": [135.0093994140625, 406.12335205078125, 475.6328125, 406.12335205078125, 475.6328125, 437.4545593261719, 135.0093994140625, 437.4545593261719], "score": 0.9990860819816589}, {"category_id": 8, "poly": [1029.3924560546875, 541.857177734375, 1400.174072265625, 541.857177734375, 1400.174072265625, 585.1640625, 1029.3924560546875, 585.1640625], "score": 0.9979717135429382}, {"category_id": 0, "poly": [133.26077270507812, 1330.139892578125, 713.5426635742188, 1330.139892578125, 713.5426635742188, 1363.1341552734375, 133.26077270507812, 1363.1341552734375], "score": 0.9967154860496521}, {"category_id": 8, "poly": [338.6681823730469, 1547.7218017578125, 626.6519775390625, 1547.7218017578125, 626.6519775390625, 1604.587646484375, 338.6681823730469, 1604.587646484375], "score": 0.9945433139801025}, {"category_id": 1, "poly": [864.5469970703125, 160.16702270507812, 1251.313720703125, 160.16702270507812, 1251.313720703125, 190.15760803222656, 864.5469970703125, 190.15760803222656], "score": 0.9902143478393555}, {"category_id": 13, "poly": [550, 577, 648, 577, 648, 612, 550, 612], "score": 0.95, "latex": "C_{a}(p,\\bar{p})"}, {"category_id": 13, "poly": [183, 1780, 304, 1780, 304, 1813, 183, 1813], "score": 0.95, "latex": "p^{\\prime}=m(\\bar{p})"}, {"category_id": 14, "poly": [279, 1000, 687, 1000, 687, 1078, 279, 1078], "score": 0.95, "latex": "w_{t}(p,p_{t-1})=\\exp\\bigg({-\\frac{\\Delta_{c}(p,p_{t-1})}{\\gamma_{t}}}\\bigg),"}, {"category_id": 14, "poly": [147, 1843, 820, 1843, 820, 1992, 147, 1992], "score": 0.94, "latex": "F_{p}=\\left\\{\\begin{array}{l l}{\\underset{\\bar{p}\\in S_{p}\\setminus m(p)}{\\mathrm{min}}\\,C(p,\\bar{p})-\\underset{\\bar{p}\\in S_{p}}{\\mathrm{min}}\\,C(p,\\bar{p})}\\\\ {\\underset{\\bar{p}\\in S_{p}\\setminus m(p)}{\\mathrm{min}}\\,C(p,\\bar{p})}&{|d_{p}-d_{p^{\\prime}}|\\leq1}\\\\ {0,}&{\\mathrm{otherwise}}\\end{array}\\right.."}, {"category_id": 14, "poly": [340, 1546, 628, 1546, 628, 1608, 340, 1608], "score": 0.93, "latex": "m(p)=\\underset{\\bar{p}\\in S_{p}}{\\mathrm{argmin}}\\,C(p,\\bar{p})\\,."}, {"category_id": 13, "poly": [321, 830, 443, 830, 443, 864, 321, 864], "score": 0.93, "latex": "w_{t}(p,p_{t-1})"}, {"category_id": 13, "poly": [581, 1713, 694, 1713, 694, 1747, 581, 1747], "score": 0.93, "latex": "{\\bar{p}}=m(p)"}, {"category_id": 14, "poly": [947, 373, 1478, 373, 1478, 454, 947, 454], "score": 0.93, "latex": "\\Lambda^{i}(p,\\bar{p})=\\alpha\\times\\sum_{q\\in\\Omega_{p}}w(p,q)F_{q}^{i-1}\\left|D_{q}^{i-1}-d_{p}\\right|\\,,"}, {"category_id": 13, "poly": [426, 445, 512, 445, 512, 479, 426, 479], "score": 0.93, "latex": "C(p,{\\bar{p}})"}, {"category_id": 13, "poly": [337, 356, 414, 356, 414, 391, 337, 391], "score": 0.93, "latex": "\\mathcal{O}(\\omega^{2})"}, {"category_id": 13, "poly": [1341, 730, 1565, 730, 1565, 765, 1341, 765], "score": 0.92, "latex": "C_{a}(p,\\bar{p})\\gets C(p,\\bar{p})"}, {"category_id": 13, "poly": [629, 1436, 691, 1436, 691, 1470, 629, 1470], "score": 0.92, "latex": "m(p)"}, {"category_id": 13, "poly": [277, 1469, 361, 1469, 361, 1504, 277, 1504], "score": 0.92, "latex": "\\bar{p}\\in S_{p}"}, {"category_id": 14, "poly": [1030, 541, 1398, 541, 1398, 582, 1030, 582], "score": 0.92, "latex": "C^{i}(p,\\bar{p})=C^{0}(p,\\bar{p})+{\\Lambda^{i}}(p,\\bar{p})\\,,"}, {"category_id": 13, "poly": [453, 356, 518, 356, 518, 391, 453, 391], "score": 0.91, "latex": "\\mathcal{O}(\\omega)"}, {"category_id": 14, "poly": [146, 714, 787, 714, 787, 791, 146, 791], "score": 0.91, "latex": "C(p,\\bar{p})\\gets\\frac{(1-\\lambda)\\cdot C(p,\\bar{p})+\\lambda\\cdot w_{t}(p,p_{t-1})\\cdot C_{a}(p,\\bar{p})}{(1-\\lambda)+\\lambda\\cdot w_{t}(p,p_{t-1})},"}, {"category_id": 13, "poly": [1095, 231, 1134, 231, 1134, 270, 1095, 270], "score": 0.9, "latex": "D_{p}^{i}"}, {"category_id": 13, "poly": [1313, 1752, 1447, 1752, 1447, 1783, 1313, 1783], "score": 0.89, "latex": "640~\\times~480"}, {"category_id": 13, "poly": [593, 1782, 627, 1782, 627, 1815, 593, 1815], "score": 0.89, "latex": "F_{p}"}, {"category_id": 13, "poly": [133, 326, 209, 326, 209, 355, 133, 355], "score": 0.88, "latex": "\\omega\\times\\omega"}, {"category_id": 13, "poly": [208, 1089, 236, 1089, 236, 1116, 208, 1116], "score": 0.85, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [1466, 769, 1484, 769, 1484, 797, 1466, 797], "score": 0.83, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [133, 935, 177, 935, 177, 963, 133, 963], "score": 0.83, "latex": "p_{t-1}"}, {"category_id": 13, "poly": [608, 1753, 627, 1753, 627, 1779, 608, 1779], "score": 0.81, "latex": "p"}, {"category_id": 13, "poly": [491, 799, 511, 799, 511, 825, 491, 825], "score": 0.81, "latex": "\\lambda"}, {"category_id": 13, "poly": [1018, 770, 1037, 770, 1037, 796, 1018, 796], "score": 0.81, "latex": "p"}, {"category_id": 13, "poly": [1086, 470, 1107, 470, 1107, 491, 1086, 491], "score": 0.8, "latex": "\\alpha"}, {"category_id": 13, "poly": [466, 901, 485, 901, 485, 929, 466, 929], "score": 0.8, "latex": "p"}, {"category_id": 13, "poly": [208, 484, 227, 484, 227, 511, 208, 511], "score": 0.79, "latex": "p"}, {"category_id": 13, "poly": [462, 1443, 480, 1443, 480, 1468, 462, 1468], "score": 0.77, "latex": "p"}, {"category_id": 13, "poly": [266, 514, 288, 514, 288, 544, 266, 544], "score": 0.77, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [816, 1716, 836, 1716, 836, 1746, 816, 1746], "score": 0.73, "latex": "\\bar{p}"}, {"category_id": 13, "poly": [132, 405, 154, 405, 154, 432, 132, 432], "score": 0.27, "latex": "B"}, {"category_id": 13, "poly": [862, 160, 887, 160, 887, 187, 862, 187], "score": 0.26, "latex": "D"}, {"category_id": 15, "poly": [887.0, 852.0, 1568.0, 855.0, 1568.0, 894.0, 887.0, 891.0], "score": 0.98, "text": " The speed and accuracy of real-time stereo matching al-"}, {"category_id": 15, "poly": [864.0, 891.0, 1566.0, 891.0, 1566.0, 924.0, 864.0, 924.0], "score": 0.99, "text": "gorithms are traditionally demonstrated using still-frame im-"}, {"category_id": 15, "poly": [859.0, 921.0, 1571.0, 919.0, 1571.0, 958.0, 859.0, 960.0], "score": 0.97, "text": " ages from the Middlebury stereo benchmark [1], [2]. Still"}, {"category_id": 15, "poly": [862.0, 956.0, 1568.0, 958.0, 1568.0, 990.0, 862.0, 988.0], "score": 0.99, "text": "frames, however, are insufficient for evaluating stereo match-"}, {"category_id": 15, "poly": [864.0, 992.0, 1571.0, 992.0, 1571.0, 1024.0, 864.0, 1024.0], "score": 1.0, "text": "ing algorithms that incorporate frame-to-frame prediction to"}, {"category_id": 15, "poly": [864.0, 1027.0, 1568.0, 1027.0, 1568.0, 1059.0, 864.0, 1059.0], "score": 0.97, "text": "enhance matching accuracy. An alternative approach is to"}, {"category_id": 15, "poly": [864.0, 1059.0, 1566.0, 1059.0, 1566.0, 1089.0, 864.0, 1089.0], "score": 0.99, "text": "use a stereo video sequence with a ground truth disparity"}, {"category_id": 15, "poly": [862.0, 1091.0, 1566.0, 1091.0, 1566.0, 1123.0, 862.0, 1123.0], "score": 1.0, "text": "for each frame. Obtaining the ground truth disparity of real"}, {"category_id": 15, "poly": [866.0, 1125.0, 1566.0, 1125.0, 1566.0, 1157.0, 866.0, 1157.0], "score": 0.98, "text": "world video sequences is a difficult undertaking due to the"}, {"category_id": 15, "poly": [859.0, 1153.0, 1568.0, 1155.0, 1568.0, 1194.0, 859.0, 1192.0], "score": 0.99, "text": "high frame rate of video and limitations in depth sensing-"}, {"category_id": 15, "poly": [864.0, 1192.0, 1568.0, 1192.0, 1568.0, 1224.0, 864.0, 1224.0], "score": 0.99, "text": "technology. To address the need for stereo video with ground"}, {"category_id": 15, "poly": [864.0, 1224.0, 1568.0, 1224.0, 1568.0, 1256.0, 864.0, 1256.0], "score": 0.99, "text": "truth disparities, five pairs of synthetic stereo video sequences"}, {"category_id": 15, "poly": [864.0, 1258.0, 1568.0, 1258.0, 1568.0, 1290.0, 864.0, 1290.0], "score": 0.99, "text": "of a computer-generated scene were given in [19]. While these"}, {"category_id": 15, "poly": [864.0, 1290.0, 1566.0, 1290.0, 1566.0, 1322.0, 864.0, 1322.0], "score": 1.0, "text": "videos incorporate a sufficient amount of movement variation,"}, {"category_id": 15, "poly": [862.0, 1325.0, 1568.0, 1325.0, 1568.0, 1357.0, 862.0, 1357.0], "score": 0.99, "text": "they were generated from relatively simple models using low-"}, {"category_id": 15, "poly": [862.0, 1359.0, 1571.0, 1359.0, 1571.0, 1389.0, 862.0, 1389.0], "score": 0.99, "text": "resolution rendering, and they do not provide occlusion or"}, {"category_id": 15, "poly": [862.0, 1386.0, 1088.0, 1394.0, 1087.0, 1426.0, 861.0, 1418.0], "score": 0.98, "text": "discontinuity maps."}, {"category_id": 15, "poly": [129.0, 156.0, 839.0, 158.0, 838.0, 197.0, 129.0, 195.0], "score": 0.99, "text": "the matching cost by performing two-pass aggregation using"}, {"category_id": 15, "poly": [130.0, 188.0, 841.0, 193.0, 841.0, 229.0, 129.0, 225.0], "score": 0.98, "text": "two orthogonal 1D windows [5], [6], [8]. The two-pass method "}, {"category_id": 15, "poly": [129.0, 225.0, 841.0, 222.0, 841.0, 261.0, 129.0, 264.0], "score": 0.99, "text": "first aggregates matching costs in the vertical direction, and"}, {"category_id": 15, "poly": [134.0, 261.0, 838.0, 261.0, 838.0, 293.0, 134.0, 293.0], "score": 0.99, "text": "then computes a weighted sum of the aggregated costs in the"}, {"category_id": 15, "poly": [132.0, 291.0, 838.0, 291.0, 838.0, 330.0, 132.0, 330.0], "score": 0.99, "text": "horizontal direction. Given that support regions are of size"}, {"category_id": 15, "poly": [136.0, 360.0, 336.0, 360.0, 336.0, 392.0, 136.0, 392.0], "score": 0.99, "text": "aggregation from"}, {"category_id": 15, "poly": [415.0, 360.0, 452.0, 360.0, 452.0, 392.0, 415.0, 392.0], "score": 0.98, "text": "to"}, {"category_id": 15, "poly": [210.0, 321.0, 836.0, 321.0, 836.0, 360.0, 210.0, 360.0], "score": 0.98, "text": ", the two-pass method reduces the complexity of cost"}, {"category_id": 15, "poly": [887.0, 1416.0, 1571.0, 1419.0, 1571.0, 1458.0, 887.0, 1455.0], "score": 0.98, "text": " To evaluate the performance of temporal aggregation, a"}, {"category_id": 15, "poly": [862.0, 1453.0, 1566.0, 1453.0, 1566.0, 1485.0, 862.0, 1485.0], "score": 0.98, "text": "new synthetic stereo video sequence is introduced along with"}, {"category_id": 15, "poly": [862.0, 1490.0, 1566.0, 1487.0, 1566.0, 1519.0, 862.0, 1522.0], "score": 0.99, "text": "corresponding disparity maps, occlusion maps, and disconti-"}, {"category_id": 15, "poly": [862.0, 1519.0, 1571.0, 1519.0, 1571.0, 1558.0, 862.0, 1558.0], "score": 0.99, "text": "nuity maps for evaluating the performance of temporal stereo"}, {"category_id": 15, "poly": [864.0, 1556.0, 1568.0, 1556.0, 1568.0, 1588.0, 864.0, 1588.0], "score": 1.0, "text": "matching algorithms. To create the video sequence, a complex"}, {"category_id": 15, "poly": [864.0, 1590.0, 1568.0, 1590.0, 1568.0, 1620.0, 864.0, 1620.0], "score": 0.99, "text": "scene was constructed using Google Sketchup and a pair"}, {"category_id": 15, "poly": [864.0, 1622.0, 1568.0, 1622.0, 1568.0, 1655.0, 864.0, 1655.0], "score": 0.99, "text": "of animated paths were rendered photorealistically using the"}, {"category_id": 15, "poly": [859.0, 1650.0, 1571.0, 1652.0, 1571.0, 1691.0, 859.0, 1689.0], "score": 0.99, "text": " Kerkythea rendering software. Realistic material properties"}, {"category_id": 15, "poly": [864.0, 1689.0, 1566.0, 1689.0, 1566.0, 1721.0, 864.0, 1721.0], "score": 1.0, "text": "were used to give surfaces a natural-looking appearance by"}, {"category_id": 15, "poly": [864.0, 1723.0, 1566.0, 1723.0, 1566.0, 1755.0, 864.0, 1755.0], "score": 0.98, "text": "adjusting their specularity, reflectance, and diffusion. The"}, {"category_id": 15, "poly": [864.0, 1788.0, 1568.0, 1788.0, 1568.0, 1820.0, 864.0, 1820.0], "score": 1.0, "text": "frame rate of 30 frames per second, and a duration of 4"}, {"category_id": 15, "poly": [862.0, 1817.0, 1568.0, 1820.0, 1568.0, 1859.0, 861.0, 1856.0], "score": 0.98, "text": "seconds. In addition to performing photorealistic rendering."}, {"category_id": 15, "poly": [864.0, 1856.0, 1568.0, 1856.0, 1568.0, 1888.0, 864.0, 1888.0], "score": 0.99, "text": "depth renders of both video sequences were also generated and"}, {"category_id": 15, "poly": [864.0, 1888.0, 1566.0, 1888.0, 1566.0, 1920.0, 864.0, 1920.0], "score": 0.98, "text": "converted to ground truth disparity for the stereo video. The"}, {"category_id": 15, "poly": [862.0, 1920.0, 1564.0, 1920.0, 1564.0, 1952.0, 862.0, 1952.0], "score": 0.99, "text": "video sequences and ground truth data have been made avail-"}, {"category_id": 15, "poly": [862.0, 1950.0, 1566.0, 1953.0, 1566.0, 1985.0, 862.0, 1982.0], "score": 0.99, "text": "able at http://mc2.unl.edu/current-research"}, {"category_id": 15, "poly": [866.0, 1989.0, 1566.0, 1989.0, 1566.0, 2019.0, 866.0, 2019.0], "score": 0.98, "text": "/ image-processing/. Figure 2 shows two sample frames"}, {"category_id": 15, "poly": [862.0, 1755.0, 1312.0, 1755.0, 1312.0, 1788.0, 862.0, 1788.0], "score": 0.97, "text": "video sequence has a resolution of "}, {"category_id": 15, "poly": [1448.0, 1755.0, 1566.0, 1755.0, 1566.0, 1788.0, 1448.0, 1788.0], "score": 0.99, "text": "pixels,a"}, {"category_id": 15, "poly": [889.0, 197.0, 1566.0, 199.0, 1566.0, 238.0, 889.0, 236.0], "score": 1.0, "text": "Once the first iteration of stereo matching is complete,"}, {"category_id": 15, "poly": [864.0, 268.0, 1566.0, 268.0, 1566.0, 300.0, 864.0, 300.0], "score": 0.99, "text": "subsequent iterations. This is done by penalizing disparities"}, {"category_id": 15, "poly": [864.0, 302.0, 1568.0, 302.0, 1568.0, 335.0, 864.0, 335.0], "score": 1.0, "text": "that deviate from their expected values. The penalty function"}, {"category_id": 15, "poly": [862.0, 337.0, 996.0, 337.0, 996.0, 369.0, 862.0, 369.0], "score": 0.97, "text": "is given by"}, {"category_id": 15, "poly": [864.0, 236.0, 1094.0, 236.0, 1094.0, 268.0, 864.0, 268.0], "score": 0.96, "text": "disparityestimates"}, {"category_id": 15, "poly": [1135.0, 236.0, 1568.0, 236.0, 1568.0, 268.0, 1135.0, 268.0], "score": 0.97, "text": " can be used to guide matching in"}, {"category_id": 15, "poly": [157.0, 1366.0, 839.0, 1368.0, 838.0, 1407.0, 157.0, 1405.0], "score": 1.0, "text": "Having performed temporal cost aggregation, matches are"}, {"category_id": 15, "poly": [134.0, 1405.0, 834.0, 1405.0, 834.0, 1437.0, 134.0, 1437.0], "score": 0.99, "text": "determined using the Winner-Takes-All (WTA) match selec-"}, {"category_id": 15, "poly": [132.0, 1506.0, 374.0, 1506.0, 374.0, 1538.0, 132.0, 1538.0], "score": 1.0, "text": "cost, and is given by"}, {"category_id": 15, "poly": [692.0, 1439.0, 834.0, 1439.0, 834.0, 1471.0, 692.0, 1471.0], "score": 0.99, "text": ", is the can-"}, {"category_id": 15, "poly": [134.0, 1474.0, 276.0, 1474.0, 276.0, 1506.0, 134.0, 1506.0], "score": 0.98, "text": "didate pixel"}, {"category_id": 15, "poly": [362.0, 1474.0, 836.0, 1474.0, 836.0, 1506.0, 362.0, 1506.0], "score": 0.99, "text": " characterized by the minimum matching"}, {"category_id": 15, "poly": [134.0, 1439.0, 461.0, 1439.0, 461.0, 1471.0, 134.0, 1471.0], "score": 1.0, "text": "tion criteria. The match for"}, {"category_id": 15, "poly": [481.0, 1439.0, 628.0, 1439.0, 628.0, 1471.0, 481.0, 1471.0], "score": 0.96, "text": ", denoted as"}, {"category_id": 15, "poly": [134.0, 548.0, 838.0, 545.0, 838.0, 577.0, 134.0, 580.0], "score": 0.99, "text": "aggregation routine is exectuted. At each time instance, the"}, {"category_id": 15, "poly": [134.0, 614.0, 834.0, 614.0, 834.0, 646.0, 134.0, 646.0], "score": 1.0, "text": "weighted summation of costs obtained in the previous frames."}, {"category_id": 15, "poly": [132.0, 646.0, 838.0, 644.0, 838.0, 676.0, 132.0, 678.0], "score": 1.0, "text": "During temporal aggregation, the auxiliary cost is merged with"}, {"category_id": 15, "poly": [132.0, 678.0, 675.0, 681.0, 674.0, 713.0, 132.0, 710.0], "score": 0.99, "text": "the cost obtained from the current frame using"}, {"category_id": 15, "poly": [134.0, 580.0, 549.0, 580.0, 549.0, 612.0, 134.0, 612.0], "score": 1.0, "text": "algorithm stores an auxiliary cost"}, {"category_id": 15, "poly": [649.0, 580.0, 841.0, 580.0, 841.0, 612.0, 649.0, 612.0], "score": 0.96, "text": "which holds a"}, {"category_id": 15, "poly": [157.0, 445.0, 425.0, 442.0, 425.0, 481.0, 157.0, 484.0], "score": 0.98, "text": " Once aggregated costs"}, {"category_id": 15, "poly": [513.0, 445.0, 838.0, 442.0, 838.0, 481.0, 513.0, 484.0], "score": 0.96, "text": " have been computed for all"}, {"category_id": 15, "poly": [132.0, 481.0, 207.0, 481.0, 207.0, 513.0, 132.0, 513.0], "score": 1.0, "text": "pixels"}, {"category_id": 15, "poly": [228.0, 481.0, 838.0, 481.0, 838.0, 513.0, 228.0, 513.0], "score": 0.97, "text": " in the reference image and their respective matching"}, {"category_id": 15, "poly": [134.0, 516.0, 265.0, 516.0, 265.0, 548.0, 134.0, 548.0], "score": 1.0, "text": "candidates"}, {"category_id": 15, "poly": [289.0, 516.0, 838.0, 516.0, 838.0, 548.0, 289.0, 548.0], "score": 0.98, "text": " in the target image, a single-pass temporal"}, {"category_id": 15, "poly": [132.0, 1116.0, 841.0, 1116.0, 841.0, 1155.0, 132.0, 1155.0], "score": 0.99, "text": "in the temporal dimension. The temporal adaptive weight has "}, {"category_id": 15, "poly": [134.0, 1153.0, 838.0, 1153.0, 838.0, 1185.0, 134.0, 1185.0], "score": 0.99, "text": "the effect of preserving edges in the temporal domain, such"}, {"category_id": 15, "poly": [132.0, 1182.0, 836.0, 1182.0, 836.0, 1215.0, 132.0, 1215.0], "score": 0.98, "text": "that when a pixel coordinate transitions from one side of an"}, {"category_id": 15, "poly": [134.0, 1219.0, 838.0, 1219.0, 838.0, 1251.0, 134.0, 1251.0], "score": 0.98, "text": "edge to another in subsequent frames, the auxiliary cost is"}, {"category_id": 15, "poly": [134.0, 1254.0, 838.0, 1254.0, 838.0, 1283.0, 134.0, 1283.0], "score": 0.99, "text": "assigned a small weight and the majority of the cost is derived"}, {"category_id": 15, "poly": [130.0, 1283.0, 404.0, 1286.0, 404.0, 1318.0, 129.0, 1315.0], "score": 1.0, "text": "from the current frame."}, {"category_id": 15, "poly": [134.0, 1086.0, 207.0, 1086.0, 207.0, 1118.0, 134.0, 1118.0], "score": 0.99, "text": "where"}, {"category_id": 15, "poly": [237.0, 1086.0, 836.0, 1086.0, 836.0, 1118.0, 237.0, 1118.0], "score": 0.99, "text": "regulates the strength of grouping by color similarity"}, {"category_id": 15, "poly": [864.0, 600.0, 1568.0, 600.0, 1568.0, 632.0, 864.0, 632.0], "score": 1.0, "text": "and the matches are reselected using the WTA match selection"}, {"category_id": 15, "poly": [864.0, 635.0, 1568.0, 635.0, 1568.0, 667.0, 864.0, 667.0], "score": 0.99, "text": "criteria. The resulting disparity maps are then post-processed"}, {"category_id": 15, "poly": [864.0, 669.0, 1564.0, 669.0, 1564.0, 699.0, 864.0, 699.0], "score": 0.98, "text": "using a combination of median filtering and occlusion filling."}, {"category_id": 15, "poly": [864.0, 701.0, 1566.0, 701.0, 1566.0, 731.0, 864.0, 731.0], "score": 0.98, "text": "Finally, the current cost becomes the auxiliary cost for the next"}, {"category_id": 15, "poly": [862.0, 731.0, 1340.0, 731.0, 1340.0, 770.0, 862.0, 770.0], "score": 0.99, "text": "pair of frames in the video sequence, i.e.,"}, {"category_id": 15, "poly": [864.0, 768.0, 1017.0, 768.0, 1017.0, 800.0, 864.0, 800.0], "score": 1.0, "text": "for all pixels"}, {"category_id": 15, "poly": [1038.0, 768.0, 1465.0, 768.0, 1465.0, 800.0, 1038.0, 800.0], "score": 0.98, "text": " in the and their matching candidates"}, {"category_id": 15, "poly": [864.0, 502.0, 1427.0, 502.0, 1427.0, 532.0, 864.0, 532.0], "score": 1.0, "text": "values are incorporated into the matching cost as"}, {"category_id": 15, "poly": [864.0, 468.0, 1085.0, 468.0, 1085.0, 500.0, 864.0, 500.0], "score": 0.96, "text": "where the value of"}, {"category_id": 15, "poly": [1108.0, 468.0, 1564.0, 468.0, 1564.0, 500.0, 1108.0, 500.0], "score": 0.99, "text": "is chosen empirically. Next, the penalty"}, {"category_id": 15, "poly": [134.0, 866.0, 838.0, 866.0, 838.0, 898.0, 134.0, 898.0], "score": 0.99, "text": "temporal domain. The temporal adaptive weight computed"}, {"category_id": 15, "poly": [132.0, 967.0, 263.0, 967.0, 263.0, 999.0, 132.0, 999.0], "score": 0.93, "text": "is given by"}, {"category_id": 15, "poly": [134.0, 834.0, 320.0, 834.0, 320.0, 866.0, 134.0, 866.0], "score": 0.97, "text": "smoothing and"}, {"category_id": 15, "poly": [444.0, 834.0, 836.0, 834.0, 836.0, 866.0, 444.0, 866.0], "score": 0.92, "text": " enforces color similarity in the"}, {"category_id": 15, "poly": [178.0, 930.0, 838.0, 928.0, 839.0, 967.0, 178.0, 969.0], "score": 0.99, "text": ", located at the same spatial coordinate in the prior frame,"}, {"category_id": 15, "poly": [132.0, 795.0, 490.0, 800.0, 490.0, 832.0, 132.0, 827.0], "score": 0.99, "text": "where the feedback coefficient"}, {"category_id": 15, "poly": [512.0, 795.0, 836.0, 800.0, 836.0, 832.0, 512.0, 827.0], "score": 0.97, "text": " controls the amount of cost"}, {"category_id": 15, "poly": [136.0, 898.0, 465.0, 898.0, 465.0, 930.0, 136.0, 930.0], "score": 0.99, "text": "between the pixel of interest"}, {"category_id": 15, "poly": [486.0, 898.0, 838.0, 898.0, 838.0, 930.0, 486.0, 930.0], "score": 1.0, "text": "in the current frame and pixel"}, {"category_id": 15, "poly": [159.0, 1616.0, 836.0, 1616.0, 836.0, 1648.0, 159.0, 1648.0], "score": 0.99, "text": "To asses the level of confidence associated with selecting"}, {"category_id": 15, "poly": [132.0, 1648.0, 836.0, 1650.0, 836.0, 1682.0, 132.0, 1680.0], "score": 1.0, "text": "minimum cost matches, the algorithm determines another set"}, {"category_id": 15, "poly": [134.0, 1684.0, 838.0, 1684.0, 838.0, 1716.0, 134.0, 1716.0], "score": 1.0, "text": "of matches, this time from the target to reference image, and"}, {"category_id": 15, "poly": [134.0, 1783.0, 182.0, 1783.0, 182.0, 1815.0, 134.0, 1815.0], "score": 1.0, "text": "and"}, {"category_id": 15, "poly": [136.0, 1714.0, 580.0, 1714.0, 580.0, 1746.0, 136.0, 1746.0], "score": 0.98, "text": "verifies if the results agree. Given that"}, {"category_id": 15, "poly": [305.0, 1783.0, 592.0, 1783.0, 592.0, 1815.0, 305.0, 1815.0], "score": 0.99, "text": ", the confidence measure"}, {"category_id": 15, "poly": [628.0, 1783.0, 811.0, 1783.0, 811.0, 1815.0, 628.0, 1815.0], "score": 0.97, "text": "is computed as"}, {"category_id": 15, "poly": [132.0, 1746.0, 607.0, 1751.0, 607.0, 1783.0, 132.0, 1778.0], "score": 1.0, "text": "in the right image is the match for pixel"}, {"category_id": 15, "poly": [628.0, 1746.0, 836.0, 1751.0, 836.0, 1783.0, 628.0, 1778.0], "score": 0.98, "text": "in the left image,"}, {"category_id": 15, "poly": [695.0, 1714.0, 815.0, 1714.0, 815.0, 1746.0, 695.0, 1746.0], "score": 0.99, "text": ", i.e. pixel"}, {"category_id": 15, "poly": [1132.0, 814.0, 1298.0, 814.0, 1298.0, 852.0, 1132.0, 852.0], "score": 1.0, "text": "IV. RESULTS"}, {"category_id": 15, "poly": [155.0, 401.0, 481.0, 406.0, 480.0, 445.0, 155.0, 440.0], "score": 0.99, "text": "Temporal cost aggregation"}, {"category_id": 15, "poly": [129.0, 1325.0, 718.0, 1327.0, 718.0, 1366.0, 129.0, 1363.0], "score": 0.99, "text": "C. Disparity Selection and Confidence Assessment"}, {"category_id": 15, "poly": [888.0, 158.0, 1252.0, 158.0, 1252.0, 197.0, 888.0, 197.0], "score": 0.97, "text": "Iterative Disparity Refinement"}], "page_info": {"page_no": 2, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [133.2669677734375, 156.7020721435547, 840.6729125976562, 156.7020721435547, 840.6729125976562, 257.75836181640625, 133.2669677734375, 257.75836181640625], "score": 0.9999951124191284}, {"category_id": 3, "poly": [866.177734375, 171.2958526611328, 1510.944580078125, 171.2958526611328, 1510.944580078125, 848.8190307617188, 866.177734375, 848.8190307617188], "score": 0.9999942779541016}, {"category_id": 1, "poly": [131.3756561279297, 1520.5887451171875, 838.545166015625, 1520.5887451171875, 838.545166015625, 1885.353515625, 131.3756561279297, 1885.353515625], "score": 0.9999925494194031}, {"category_id": 4, "poly": [131.56919860839844, 1352.6187744140625, 840.1758422851562, 1352.6187744140625, 840.1758422851562, 1490.513671875, 131.56919860839844, 1490.513671875], "score": 0.9999915361404419}, {"category_id": 1, "poly": [132.41786193847656, 1886.0615234375, 838.675537109375, 1886.0615234375, 838.675537109375, 2019.347412109375, 132.41786193847656, 2019.347412109375], "score": 0.9999526739120483}, {"category_id": 3, "poly": [136.71240234375, 278.259765625, 816.1984252929688, 278.259765625, 816.1984252929688, 1348.5758056640625, 136.71240234375, 1348.5758056640625], "score": 0.9999439120292664}, {"category_id": 1, "poly": [863.4852905273438, 1917.056884765625, 1569.6337890625, 1917.056884765625, 1569.6337890625, 2020.57421875, 863.4852905273438, 2020.57421875], "score": 0.9999344348907471}, {"category_id": 4, "poly": [861.7813720703125, 1749.4459228515625, 1567.659912109375, 1749.4459228515625, 1567.659912109375, 1852.389892578125, 861.7813720703125, 1852.389892578125], "score": 0.9986151456832886}, {"category_id": 3, "poly": [874.6467895507812, 1536.7642822265625, 1506.6514892578125, 1536.7642822265625, 1506.6514892578125, 1734.9659423828125, 874.6467895507812, 1734.9659423828125], "score": 0.9940656423568726}, {"category_id": 4, "poly": [859.3250122070312, 861.2320556640625, 1569.650634765625, 861.2320556640625, 1569.650634765625, 1033.0804443359375, 859.3250122070312, 1033.0804443359375], "score": 0.985899806022644}, {"category_id": 1, "poly": [861.6172485351562, 1064.186279296875, 1564.036865234375, 1064.186279296875, 1564.036865234375, 1135.5125732421875, 861.6172485351562, 1135.5125732421875], "score": 0.9128350019454956}, {"category_id": 3, "poly": [888.8074340820312, 1163.7965087890625, 1529.8028564453125, 1163.7965087890625, 1529.8028564453125, 1510.91162109375, 888.8074340820312, 1510.91162109375], "score": 0.7896175384521484}, {"category_id": 5, "poly": [900.75146484375, 1161.0631103515625, 1527.15673828125, 1161.0631103515625, 1527.15673828125, 1490.2149658203125, 900.75146484375, 1490.2149658203125], "score": 0.7772396802902222}, {"category_id": 0, "poly": [1178.85791015625, 152.25347900390625, 1284.6339111328125, 152.25347900390625, 1284.6339111328125, 179.1011962890625, 1178.85791015625, 179.1011962890625], "score": 0.5732811689376831}, {"category_id": 4, "poly": [1178.981689453125, 152.21678161621094, 1284.4158935546875, 152.21678161621094, 1284.4158935546875, 179.05447387695312, 1178.981689453125, 179.05447387695312], "score": 0.4503781795501709}, {"category_id": 13, "poly": [1295, 896, 1483, 896, 1483, 931, 1295, 931], "score": 0.93, "latex": "\\{\\pm0,\\pm20,\\pm40\\}"}, {"category_id": 13, "poly": [481, 1919, 534, 1919, 534, 1949, 481, 1949], "score": 0.87, "latex": "\\pm20"}, {"category_id": 13, "poly": [591, 1919, 644, 1919, 644, 1949, 591, 1949], "score": 0.87, "latex": "\\pm40"}, {"category_id": 13, "poly": [1227, 1436, 1253, 1436, 1253, 1459, 1227, 1459], "score": 0.86, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [1295, 1436, 1323, 1436, 1323, 1461, 1295, 1461], "score": 0.85, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [133, 1588, 186, 1588, 186, 1618, 133, 1618], "score": 0.85, "latex": "\\pm20"}, {"category_id": 13, "poly": [249, 1587, 302, 1587, 302, 1618, 249, 1618], "score": 0.84, "latex": "\\pm40"}, {"category_id": 13, "poly": [787, 1555, 828, 1555, 828, 1585, 787, 1585], "score": 0.82, "latex": "\\pm0"}, {"category_id": 13, "poly": [532, 1421, 572, 1421, 572, 1452, 532, 1452], "score": 0.81, "latex": "3^{\\mathrm{rd}}"}, {"category_id": 13, "poly": [230, 1389, 266, 1389, 266, 1419, 230, 1419], "score": 0.8, "latex": "1^{\\mathrm{st}}"}, {"category_id": 13, "poly": [655, 1986, 675, 1986, 675, 2013, 655, 2013], "score": 0.78, "latex": "\\lambda"}, {"category_id": 13, "poly": [200, 1455, 240, 1455, 240, 1486, 200, 1486], "score": 0.75, "latex": "4^{\\mathrm{th}}"}, {"category_id": 13, "poly": [954, 1255, 980, 1255, 980, 1275, 954, 1275], "score": 0.75, "latex": "\\gamma_{c}"}, {"category_id": 13, "poly": [954, 1281, 980, 1281, 980, 1302, 954, 1302], "score": 0.74, "latex": "\\gamma_{g}"}, {"category_id": 13, "poly": [959, 1227, 976, 1227, 976, 1245, 959, 1245], "score": 0.74, "latex": "\\tau"}, {"category_id": 13, "poly": [960, 1352, 976, 1352, 976, 1372, 960, 1372], "score": 0.72, "latex": "k"}, {"category_id": 13, "poly": [410, 1986, 430, 1986, 430, 2013, 410, 2013], "score": 0.7, "latex": "\\lambda"}, {"category_id": 13, "poly": [955, 1331, 979, 1331, 979, 1351, 955, 1351], "score": 0.7, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [1489, 1752, 1510, 1752, 1510, 1778, 1489, 1778], "score": 0.69, "latex": "\\lambda"}, {"category_id": 13, "poly": [1176, 965, 1195, 965, 1195, 992, 1176, 992], "score": 0.69, "latex": "\\lambda"}, {"category_id": 13, "poly": [246, 1421, 289, 1421, 289, 1452, 246, 1452], "score": 0.69, "latex": "2^{\\mathrm{nd}}"}, {"category_id": 13, "poly": [958, 1302, 977, 1302, 977, 1323, 958, 1323], "score": 0.63, "latex": "\\lambda"}, {"category_id": 13, "poly": [959, 1380, 977, 1380, 977, 1397, 959, 1397], "score": 0.58, "latex": "\\alpha"}, {"category_id": 13, "poly": [436, 1621, 455, 1621, 455, 1648, 436, 1648], "score": 0.58, "latex": "\\lambda"}, {"category_id": 13, "poly": [959, 1204, 977, 1204, 977, 1219, 959, 1219], "score": 0.42, "latex": "\\omega"}, {"category_id": 13, "poly": [870, 1592, 890, 1592, 890, 1617, 870, 1617], "score": 0.31, "latex": "\\lambda"}, {"category_id": 15, "poly": [134.0, 160.0, 836.0, 160.0, 836.0, 192.0, 134.0, 192.0], "score": 0.99, "text": "of the synthetic stereo scene from a single camera perspective,"}, {"category_id": 15, "poly": [134.0, 195.0, 838.0, 195.0, 838.0, 227.0, 134.0, 227.0], "score": 0.99, "text": "along with the ground truth disparity, occlusion map, and"}, {"category_id": 15, "poly": [130.0, 222.0, 347.0, 230.0, 346.0, 264.0, 129.0, 256.0], "score": 0.99, "text": "discontinuity map."}, {"category_id": 15, "poly": [155.0, 1517.0, 841.0, 1519.0, 841.0, 1558.0, 155.0, 1556.0], "score": 0.99, "text": " The results of temporal stereo matching are given in Figure"}, {"category_id": 15, "poly": [132.0, 1657.0, 838.0, 1657.0, 838.0, 1689.0, 132.0, 1689.0], "score": 0.99, "text": "stereo matching methods, improvements are negligible when"}, {"category_id": 15, "poly": [132.0, 1691.0, 838.0, 1691.0, 838.0, 1723.0, 132.0, 1723.0], "score": 0.99, "text": "no noise is added to the images [10], [19]. This is largely due"}, {"category_id": 15, "poly": [132.0, 1723.0, 836.0, 1723.0, 836.0, 1753.0, 132.0, 1753.0], "score": 0.98, "text": "to the fact that the video used to evaluate these methods is"}, {"category_id": 15, "poly": [129.0, 1753.0, 838.0, 1751.0, 839.0, 1790.0, 129.0, 1792.0], "score": 0.99, "text": " computer generated with very little noise to start with, thus"}, {"category_id": 15, "poly": [134.0, 1790.0, 836.0, 1790.0, 836.0, 1822.0, 134.0, 1822.0], "score": 0.99, "text": "the noise suppression achieved with temporal stereo matching"}, {"category_id": 15, "poly": [132.0, 1817.0, 839.0, 1822.0, 838.0, 1859.0, 132.0, 1854.0], "score": 0.99, "text": "shows little to no improvement over methods that operate on"}, {"category_id": 15, "poly": [130.0, 1856.0, 319.0, 1859.0, 318.0, 1891.0, 129.0, 1888.0], "score": 0.99, "text": "pairs of images."}, {"category_id": 15, "poly": [187.0, 1590.0, 248.0, 1590.0, 248.0, 1622.0, 187.0, 1622.0], "score": 0.87, "text": ",and"}, {"category_id": 15, "poly": [303.0, 1590.0, 838.0, 1590.0, 838.0, 1622.0, 303.0, 1622.0], "score": 0.98, "text": ". Each performance plot is given as a function"}, {"category_id": 15, "poly": [127.0, 1551.0, 786.0, 1554.0, 786.0, 1593.0, 127.0, 1590.0], "score": 0.98, "text": " 3 for uniform additive noise confined to the ranges of"}, {"category_id": 15, "poly": [134.0, 1622.0, 435.0, 1622.0, 435.0, 1655.0, 134.0, 1655.0], "score": 0.99, "text": "of the feedback coefficient"}, {"category_id": 15, "poly": [456.0, 1622.0, 836.0, 1622.0, 836.0, 1655.0, 456.0, 1655.0], "score": 0.97, "text": ". As with the majority of temporal"}, {"category_id": 15, "poly": [134.0, 1359.0, 834.0, 1359.0, 834.0, 1391.0, 134.0, 1391.0], "score": 0.99, "text": "Figure 2: Two sample frames from the synthetic video se-"}, {"category_id": 15, "poly": [573.0, 1418.0, 836.0, 1421.0, 836.0, 1460.0, 573.0, 1457.0], "score": 1.0, "text": "row), and discontinuity"}, {"category_id": 15, "poly": [134.0, 1393.0, 229.0, 1393.0, 229.0, 1425.0, 134.0, 1425.0], "score": 0.96, "text": "quence ("}, {"category_id": 15, "poly": [267.0, 1393.0, 836.0, 1393.0, 836.0, 1425.0, 267.0, 1425.0], "score": 0.98, "text": "row), along with their corresponding ground truth"}, {"category_id": 15, "poly": [127.0, 1456.0, 199.0, 1450.0, 199.0, 1489.0, 128.0, 1495.0], "score": 0.91, "text": "map ("}, {"category_id": 15, "poly": [241.0, 1456.0, 309.0, 1450.0, 310.0, 1489.0, 241.0, 1495.0], "score": 1.0, "text": "row)."}, {"category_id": 15, "poly": [129.0, 1418.0, 245.0, 1421.0, 245.0, 1460.0, 129.0, 1457.0], "score": 0.93, "text": " disparity "}, {"category_id": 15, "poly": [290.0, 1418.0, 531.0, 1421.0, 531.0, 1460.0, 290.0, 1457.0], "score": 1.0, "text": "row), occlusion map ("}, {"category_id": 15, "poly": [159.0, 1888.0, 836.0, 1888.0, 836.0, 1920.0, 159.0, 1920.0], "score": 0.99, "text": " Significant improvements in accuracy can be seen in Figure"}, {"category_id": 15, "poly": [132.0, 1950.0, 839.0, 1955.0, 838.0, 1987.0, 132.0, 1982.0], "score": 1.0, "text": "the effect of noise in the current frame is reduced by increasing"}, {"category_id": 15, "poly": [134.0, 1920.0, 480.0, 1920.0, 480.0, 1952.0, 134.0, 1952.0], "score": 0.99, "text": "3 when the noise has ranges of"}, {"category_id": 15, "poly": [535.0, 1920.0, 590.0, 1920.0, 590.0, 1952.0, 535.0, 1952.0], "score": 0.92, "text": " and"}, {"category_id": 15, "poly": [645.0, 1920.0, 836.0, 1920.0, 836.0, 1952.0, 645.0, 1952.0], "score": 0.96, "text": ". In this scenario,"}, {"category_id": 15, "poly": [676.0, 1989.0, 838.0, 1989.0, 838.0, 2019.0, 676.0, 2019.0], "score": 0.98, "text": "has the effect"}, {"category_id": 15, "poly": [134.0, 1989.0, 409.0, 1989.0, 409.0, 2019.0, 134.0, 2019.0], "score": 1.0, "text": "the feedback coefficient"}, {"category_id": 15, "poly": [431.0, 1989.0, 654.0, 1989.0, 654.0, 2019.0, 431.0, 2019.0], "score": 0.97, "text": ". This increasing of"}, {"category_id": 15, "poly": [864.0, 1920.0, 1566.0, 1920.0, 1566.0, 1952.0, 864.0, 1952.0], "score": 0.98, "text": "of averaging out noise in the per-pixel costs by selecting"}, {"category_id": 15, "poly": [861.0, 1950.0, 1566.0, 1948.0, 1566.0, 1987.0, 862.0, 1989.0], "score": 0.98, "text": "matches based more heavily upon the auxiliary cost, which"}, {"category_id": 15, "poly": [862.0, 1989.0, 1568.0, 1989.0, 1568.0, 2021.0, 862.0, 2021.0], "score": 0.99, "text": "is essentially a much more stable running average of the cost"}, {"category_id": 15, "poly": [864.0, 1788.0, 1564.0, 1785.0, 1564.0, 1817.0, 864.0, 1820.0], "score": 0.99, "text": "responding to the smallest mean squared error (MSE) of the"}, {"category_id": 15, "poly": [864.0, 1822.0, 1427.0, 1822.0, 1427.0, 1854.0, 864.0, 1854.0], "score": 0.99, "text": "disparity estimates for a range of noise strengths."}, {"category_id": 15, "poly": [862.0, 1748.0, 1488.0, 1753.0, 1488.0, 1785.0, 861.0, 1781.0], "score": 0.99, "text": "Figure 4: Optimal values of the feedback coefficient "}, {"category_id": 15, "poly": [1511.0, 1748.0, 1561.0, 1753.0, 1561.0, 1785.0, 1511.0, 1781.0], "score": 0.96, "text": "cor-"}, {"category_id": 15, "poly": [864.0, 866.0, 1566.0, 866.0, 1566.0, 898.0, 864.0, 898.0], "score": 0.99, "text": "Figure 3: Performance of temporal matching at different levels"}, {"category_id": 15, "poly": [864.0, 935.0, 1566.0, 933.0, 1566.0, 965.0, 864.0, 967.0], "score": 0.98, "text": "squared error (MSE) of disparities is plotted versus the values"}, {"category_id": 15, "poly": [864.0, 1001.0, 1492.0, 1001.0, 1492.0, 1031.0, 864.0, 1031.0], "score": 0.99, "text": "values of MSE obtained without temporal aggregation."}, {"category_id": 15, "poly": [864.0, 901.0, 1294.0, 901.0, 1294.0, 933.0, 864.0, 933.0], "score": 0.99, "text": "of uniformly distributed image noise"}, {"category_id": 15, "poly": [1484.0, 901.0, 1568.0, 901.0, 1568.0, 933.0, 1484.0, 933.0], "score": 0.99, "text": ".Mean"}, {"category_id": 15, "poly": [864.0, 967.0, 1175.0, 967.0, 1175.0, 999.0, 864.0, 999.0], "score": 0.99, "text": "of the feedback coefficient"}, {"category_id": 15, "poly": [1196.0, 967.0, 1568.0, 967.0, 1568.0, 999.0, 1196.0, 999.0], "score": 0.99, "text": ". Dashed lines correspond to the"}, {"category_id": 15, "poly": [857.0, 1061.0, 1566.0, 1068.0, 1566.0, 1107.0, 857.0, 1100.0], "score": 0.99, "text": " Table I: Parameters used in the evaluation of real-time tempo-"}, {"category_id": 15, "poly": [859.0, 1102.0, 1093.0, 1105.0, 1092.0, 1137.0, 859.0, 1134.0], "score": 1.0, "text": "ral stereo matching."}, {"category_id": 15, "poly": [1178.0, 151.0, 1282.0, 151.0, 1282.0, 186.0, 1178.0, 186.0], "score": 1.0, "text": "Noise: \u00b10"}, {"category_id": 15, "poly": [1178.0, 151.0, 1282.0, 151.0, 1282.0, 186.0, 1178.0, 186.0], "score": 1.0, "text": "Noise: \u00b10"}], "page_info": {"page_no": 3, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 5, "poly": [880.81298828125, 613.750244140625, 1552.5638427734375, 613.750244140625, 1552.5638427734375, 855.9174194335938, 880.81298828125, 855.9174194335938], "score": 0.9999957084655762}, {"category_id": 1, "poly": [862.7925415039062, 158.05548095703125, 1569.6671142578125, 158.05548095703125, 1569.6671142578125, 456.6153869628906, 862.7925415039062, 456.6153869628906], "score": 0.9999922513961792}, {"category_id": 1, "poly": [864.6585083007812, 1061.7374267578125, 1570.4825439453125, 1061.7374267578125, 1570.4825439453125, 1459.7132568359375, 864.6585083007812, 1459.7132568359375], "score": 0.9999921321868896}, {"category_id": 1, "poly": [130.64285278320312, 1519.7022705078125, 836.2221069335938, 1519.7022705078125, 836.2221069335938, 1882.68359375, 130.64285278320312, 1882.68359375], "score": 0.9999898672103882}, {"category_id": 1, "poly": [133.1135711669922, 158.4307861328125, 837.9683837890625, 158.4307861328125, 837.9683837890625, 323.343017578125, 133.1135711669922, 323.343017578125], "score": 0.9999892115592957}, {"category_id": 4, "poly": [132.3511199951172, 1347.8763427734375, 839.7514038085938, 1347.8763427734375, 839.7514038085938, 1476.9757080078125, 132.3511199951172, 1476.9757080078125], "score": 0.9999880790710449}, {"category_id": 7, "poly": [887.6280517578125, 860.9362182617188, 1551.5972900390625, 860.9362182617188, 1551.5972900390625, 964.0142211914062, 887.6280517578125, 964.0142211914062], "score": 0.9999836683273315}, {"category_id": 1, "poly": [869.9986572265625, 1514.7762451171875, 1571.624755859375, 1514.7762451171875, 1571.624755859375, 2022.618896484375, 869.9986572265625, 2022.618896484375], "score": 0.9999811053276062}, {"category_id": 3, "poly": [164.82151794433594, 352.74810791015625, 805.8219604492188, 352.74810791015625, 805.8219604492188, 1320.43310546875, 164.82151794433594, 1320.43310546875], "score": 0.9999799728393555}, {"category_id": 0, "poly": [1137.668701171875, 1477.0120849609375, 1293.498046875, 1477.0120849609375, 1293.498046875, 1502.5439453125, 1137.668701171875, 1502.5439453125], "score": 0.9999679327011108}, {"category_id": 1, "poly": [133.0285186767578, 1886.7501220703125, 837.0147705078125, 1886.7501220703125, 837.0147705078125, 2018.0294189453125, 133.0285186767578, 2018.0294189453125], "score": 0.9999630451202393}, {"category_id": 0, "poly": [1114.8399658203125, 1022.4933471679688, 1317.0313720703125, 1022.4933471679688, 1317.0313720703125, 1052.679931640625, 1114.8399658203125, 1052.679931640625], "score": 0.9999338984489441}, {"category_id": 1, "poly": [862.0576171875, 480.8196105957031, 1565.8367919921875, 480.8196105957031, 1565.8367919921875, 577.5508422851562, 862.0576171875, 577.5508422851562], "score": 0.8958550691604614}, {"category_id": 6, "poly": [862.0606079101562, 480.7809753417969, 1565.667724609375, 480.7809753417969, 1565.667724609375, 577.4689331054688, 862.0606079101562, 577.4689331054688], "score": 0.4145430028438568}, {"category_id": 13, "poly": [736, 1445, 827, 1445, 827, 1475, 736, 1475], "score": 0.9, "latex": "\\lambda=0.8"}, {"category_id": 13, "poly": [1003, 887, 1105, 887, 1105, 911, 1003, 911], "score": 0.89, "latex": "320\\times240"}, {"category_id": 13, "poly": [338, 1446, 391, 1446, 391, 1475, 338, 1475], "score": 0.87, "latex": "\\pm30"}, {"category_id": 13, "poly": [166, 1619, 219, 1619, 219, 1649, 166, 1649], "score": 0.85, "latex": "\\pm40"}, {"category_id": 13, "poly": [301, 196, 329, 196, 329, 224, 301, 224], "score": 0.84, "latex": "\\gamma_{t}"}, {"category_id": 13, "poly": [795, 1586, 836, 1586, 836, 1616, 795, 1616], "score": 0.84, "latex": "\\pm0"}, {"category_id": 13, "poly": [1037, 939, 1059, 939, 1059, 960, 1037, 960], "score": 0.83, "latex": "\\%"}, {"category_id": 13, "poly": [462, 1586, 482, 1586, 482, 1613, 462, 1613], "score": 0.78, "latex": "\\lambda"}, {"category_id": 15, "poly": [862.0, 160.0, 1571.0, 160.0, 1571.0, 192.0, 862.0, 192.0], "score": 0.98, "text": "the proposed implementation achieves the highest speed of"}, {"category_id": 15, "poly": [864.0, 195.0, 1566.0, 195.0, 1566.0, 227.0, 864.0, 227.0], "score": 0.99, "text": "operation measured by the number of disparity hypotheses"}, {"category_id": 15, "poly": [864.0, 227.0, 1568.0, 227.0, 1568.0, 259.0, 864.0, 259.0], "score": 0.99, "text": "evaluated per second, as shown in Table I1. It is also the second"}, {"category_id": 15, "poly": [862.0, 261.0, 1568.0, 261.0, 1568.0, 293.0, 862.0, 293.0], "score": 0.99, "text": "most accurate real-time method in terms of error rate, as"}, {"category_id": 15, "poly": [864.0, 296.0, 1564.0, 296.0, 1564.0, 325.0, 864.0, 325.0], "score": 1.0, "text": "measured using the Middlebury stereo evaluation benchmark."}, {"category_id": 15, "poly": [859.0, 323.0, 1568.0, 325.0, 1568.0, 358.0, 859.0, 355.0], "score": 0.98, "text": " It should be noted that it is difficult to establish an unbiased"}, {"category_id": 15, "poly": [862.0, 358.0, 1566.0, 358.0, 1566.0, 390.0, 862.0, 390.0], "score": 1.0, "text": "metric for speed comparisons, as the architecture, number of"}, {"category_id": 15, "poly": [866.0, 394.0, 1568.0, 394.0, 1568.0, 426.0, 866.0, 426.0], "score": 0.98, "text": "cores, and clock speed of graphics hardware used are not"}, {"category_id": 15, "poly": [862.0, 424.0, 1259.0, 429.0, 1259.0, 461.0, 861.0, 456.0], "score": 0.99, "text": "consistent across implementations."}, {"category_id": 15, "poly": [889.0, 1061.0, 1571.0, 1061.0, 1571.0, 1100.0, 889.0, 1100.0], "score": 1.0, "text": "While the majority of stereo matching algorithms focus"}, {"category_id": 15, "poly": [859.0, 1093.0, 1571.0, 1095.0, 1571.0, 1134.0, 859.0, 1132.0], "score": 0.99, "text": " on achieving high accuracy on still images, the volume of"}, {"category_id": 15, "poly": [862.0, 1130.0, 1564.0, 1130.0, 1564.0, 1162.0, 862.0, 1162.0], "score": 0.99, "text": "research aimed at recovery of temporally consistent disparity"}, {"category_id": 15, "poly": [862.0, 1162.0, 1568.0, 1162.0, 1568.0, 1201.0, 862.0, 1201.0], "score": 0.99, "text": "maps remains disproportionally small. This paper introduces"}, {"category_id": 15, "poly": [862.0, 1196.0, 1568.0, 1196.0, 1568.0, 1235.0, 862.0, 1235.0], "score": 0.98, "text": "an efficient temporal cost aggregation scheme that can easily"}, {"category_id": 15, "poly": [859.0, 1226.0, 1571.0, 1228.0, 1571.0, 1267.0, 859.0, 1265.0], "score": 0.99, "text": "be combined with conventional spatial cost aggregation to"}, {"category_id": 15, "poly": [864.0, 1265.0, 1568.0, 1265.0, 1568.0, 1297.0, 864.0, 1297.0], "score": 1.0, "text": "improve the accuracy of stereo matching when operating on"}, {"category_id": 15, "poly": [864.0, 1297.0, 1568.0, 1297.0, 1568.0, 1329.0, 864.0, 1329.0], "score": 0.99, "text": "video sequences. A synthetic video sequence, along with"}, {"category_id": 15, "poly": [864.0, 1331.0, 1568.0, 1331.0, 1568.0, 1364.0, 864.0, 1364.0], "score": 0.99, "text": "ground truth disparity data, was generated to evaluate the"}, {"category_id": 15, "poly": [862.0, 1361.0, 1571.0, 1361.0, 1571.0, 1400.0, 862.0, 1400.0], "score": 0.98, "text": "performance of the proposed method. It was shown that"}, {"category_id": 15, "poly": [864.0, 1398.0, 1571.0, 1398.0, 1571.0, 1430.0, 864.0, 1430.0], "score": 0.98, "text": "temporal aggregation is significantly more robust to noise than"}, {"category_id": 15, "poly": [862.0, 1430.0, 1497.0, 1430.0, 1497.0, 1462.0, 862.0, 1462.0], "score": 0.99, "text": "a method that only considers the current stereo frames."}, {"category_id": 15, "poly": [157.0, 1517.0, 838.0, 1517.0, 838.0, 1556.0, 157.0, 1556.0], "score": 0.99, "text": "The optimal value of the feedback coefficient is largely"}, {"category_id": 15, "poly": [134.0, 1554.0, 836.0, 1554.0, 836.0, 1584.0, 134.0, 1584.0], "score": 0.97, "text": "dependent on the noise being added to the image. Figure 4"}, {"category_id": 15, "poly": [132.0, 1655.0, 838.0, 1655.0, 838.0, 1684.0, 132.0, 1684.0], "score": 0.99, "text": "rely on the auxiliary cost when noise is high and it is more"}, {"category_id": 15, "poly": [132.0, 1684.0, 839.0, 1689.0, 838.0, 1721.0, 132.0, 1716.0], "score": 0.98, "text": "beneficial to rely on the current cost when noise is low. Figure"}, {"category_id": 15, "poly": [132.0, 1719.0, 839.0, 1723.0, 838.0, 1755.0, 132.0, 1751.0], "score": 1.0, "text": "5 illustrates the improvements that are achieved when applying"}, {"category_id": 15, "poly": [134.0, 1755.0, 836.0, 1755.0, 836.0, 1785.0, 134.0, 1785.0], "score": 0.98, "text": "temporal stereo matching to a particular pair of frames in the"}, {"category_id": 15, "poly": [134.0, 1788.0, 834.0, 1788.0, 834.0, 1820.0, 134.0, 1820.0], "score": 1.0, "text": "synthetic video sequence. Clearly, the noise in the disparity"}, {"category_id": 15, "poly": [134.0, 1822.0, 836.0, 1822.0, 836.0, 1854.0, 134.0, 1854.0], "score": 0.99, "text": "map is drastically reduced when temporal stereo matching is"}, {"category_id": 15, "poly": [132.0, 1856.0, 196.0, 1856.0, 196.0, 1886.0, 132.0, 1886.0], "score": 1.0, "text": "used."}, {"category_id": 15, "poly": [132.0, 1620.0, 165.0, 1620.0, 165.0, 1652.0, 132.0, 1652.0], "score": 0.99, "text": "to"}, {"category_id": 15, "poly": [220.0, 1620.0, 838.0, 1620.0, 838.0, 1652.0, 220.0, 1652.0], "score": 0.98, "text": ". As intuition would suggest, it is more beneficial to"}, {"category_id": 15, "poly": [127.0, 1584.0, 461.0, 1581.0, 461.0, 1620.0, 127.0, 1623.0], "score": 0.96, "text": " shows the optimal values of"}, {"category_id": 15, "poly": [483.0, 1584.0, 794.0, 1581.0, 794.0, 1620.0, 483.0, 1623.0], "score": 0.99, "text": "for noise ranging between"}, {"category_id": 15, "poly": [134.0, 160.0, 836.0, 160.0, 836.0, 192.0, 134.0, 192.0], "score": 0.99, "text": "over the most recent frames. By maintaining a reasonably"}, {"category_id": 15, "poly": [134.0, 229.0, 836.0, 229.0, 836.0, 261.0, 134.0, 261.0], "score": 0.98, "text": "edges, essentially reducing over-smoothing of a pixel's dis-"}, {"category_id": 15, "poly": [132.0, 261.0, 838.0, 261.0, 838.0, 293.0, 132.0, 293.0], "score": 0.99, "text": "parity when a pixel transitions from one depth to another in"}, {"category_id": 15, "poly": [130.0, 293.0, 354.0, 296.0, 353.0, 328.0, 129.0, 325.0], "score": 1.0, "text": "subsequent frames."}, {"category_id": 15, "poly": [134.0, 192.0, 300.0, 192.0, 300.0, 225.0, 134.0, 225.0], "score": 0.93, "text": "high value of"}, {"category_id": 15, "poly": [330.0, 192.0, 836.0, 192.0, 836.0, 225.0, 330.0, 225.0], "score": 0.99, "text": ", the auxiliary cost also preserves temporal"}, {"category_id": 15, "poly": [132.0, 1345.0, 836.0, 1348.0, 836.0, 1382.0, 132.0, 1380.0], "score": 1.0, "text": "Figure 5: A comparison of stereo matching without temporal"}, {"category_id": 15, "poly": [132.0, 1382.0, 834.0, 1382.0, 834.0, 1414.0, 132.0, 1414.0], "score": 0.98, "text": "cost aggregation (top\uff09 and with temporal cost aggregation"}, {"category_id": 15, "poly": [134.0, 1416.0, 836.0, 1416.0, 836.0, 1446.0, 134.0, 1446.0], "score": 0.98, "text": "(bottom) for a single frame in the synthetic video sequence"}, {"category_id": 15, "poly": [134.0, 1448.0, 337.0, 1446.0, 337.0, 1478.0, 134.0, 1480.0], "score": 0.98, "text": "where the noise is"}, {"category_id": 15, "poly": [392.0, 1448.0, 735.0, 1446.0, 735.0, 1478.0, 392.0, 1480.0], "score": 0.99, "text": "and the feedback coefficient is"}, {"category_id": 15, "poly": [896.0, 855.0, 1324.0, 857.0, 1323.0, 896.0, 896.0, 894.0], "score": 0.95, "text": "1I Millions of Disparity Estimates per Second."}, {"category_id": 15, "poly": [903.0, 912.0, 1550.0, 912.0, 1550.0, 944.0, 903.0, 944.0], "score": 0.99, "text": "3 As measured by the Middlebury stereo performance benchmark using"}, {"category_id": 15, "poly": [901.0, 887.0, 1002.0, 887.0, 1002.0, 919.0, 901.0, 919.0], "score": 0.99, "text": "2Assumes"}, {"category_id": 15, "poly": [1106.0, 887.0, 1404.0, 887.0, 1404.0, 919.0, 1106.0, 919.0], "score": 0.98, "text": "images with 32 disparity levels."}, {"category_id": 15, "poly": [915.0, 937.0, 1036.0, 937.0, 1036.0, 969.0, 915.0, 969.0], "score": 0.96, "text": "the avgerage"}, {"category_id": 15, "poly": [1060.0, 937.0, 1192.0, 937.0, 1192.0, 969.0, 1060.0, 969.0], "score": 0.96, "text": "of bad pixels."}, {"category_id": 15, "poly": [873.0, 1515.0, 1571.0, 1515.0, 1571.0, 1545.0, 873.0, 1545.0], "score": 0.97, "text": "[1] D. Scharstein and R. Szeliski, \u201cA taxonomy and evaluation of dense "}, {"category_id": 15, "poly": [915.0, 1542.0, 1573.0, 1542.0, 1573.0, 1572.0, 915.0, 1572.0], "score": 0.98, "text": "two-frame stereo correspondence algorithms\u201d\u2019 International Journal of"}, {"category_id": 15, "poly": [915.0, 1565.0, 1409.0, 1565.0, 1409.0, 1597.0, 915.0, 1597.0], "score": 0.98, "text": "Computer Vision, vol. 47, pp. 7-42, April-June 2002."}, {"category_id": 15, "poly": [871.0, 1588.0, 1568.0, 1590.0, 1568.0, 1623.0, 871.0, 1620.0], "score": 0.98, "text": "[2] D. Scharstein and R. Szeliski, \u201cHigh-accuracy stereo depth maps using"}, {"category_id": 15, "poly": [915.0, 1616.0, 1568.0, 1616.0, 1568.0, 1648.0, 915.0, 1648.0], "score": 0.97, "text": "structured light,\u201d in In IEEE Computer Society Conference on Computer"}, {"category_id": 15, "poly": [915.0, 1641.0, 1508.0, 1641.0, 1508.0, 1673.0, 915.0, 1673.0], "score": 0.98, "text": "Vision and Pattern Recognition, vol. 1, pp. 195-202, June 2003."}, {"category_id": 15, "poly": [873.0, 1666.0, 1568.0, 1666.0, 1568.0, 1696.0, 873.0, 1696.0], "score": 0.99, "text": "[3] J. Kowalczuk, E. Psota, and L. Perez, \u201cReal-time stereo matching on"}, {"category_id": 15, "poly": [912.0, 1689.0, 1571.0, 1689.0, 1571.0, 1721.0, 912.0, 1721.0], "score": 0.98, "text": " CUDA using an iterative refinement method for adaptive support-weight"}, {"category_id": 15, "poly": [915.0, 1714.0, 1571.0, 1714.0, 1571.0, 1746.0, 915.0, 1746.0], "score": 0.99, "text": "correspondences,\u201d Circuits and Systems for Video Technology, IEEE"}, {"category_id": 15, "poly": [908.0, 1737.0, 1374.0, 1735.0, 1374.0, 1774.0, 908.0, 1776.0], "score": 0.96, "text": "Transactions on, vol. 23, Ppp. 94 -104, Jan. 2013."}, {"category_id": 15, "poly": [873.0, 1765.0, 1568.0, 1765.0, 1568.0, 1797.0, 873.0, 1797.0], "score": 0.99, "text": "[4] K.-J. Yoon and I.-S. Kweon, Locally adaptive support-weight approach"}, {"category_id": 15, "poly": [912.0, 1790.0, 1571.0, 1790.0, 1571.0, 1822.0, 912.0, 1822.0], "score": 0.97, "text": "for visual correspondence search,' in CVPR'05: Proceedings of the 2005"}, {"category_id": 15, "poly": [915.0, 1815.0, 1571.0, 1815.0, 1571.0, 1847.0, 915.0, 1847.0], "score": 0.96, "text": "IEEE Computer Society Conference on ComputerVision andPattern"}, {"category_id": 15, "poly": [915.0, 1840.0, 1568.0, 1840.0, 1568.0, 1872.0, 915.0, 1872.0], "score": 0.97, "text": "Recognition (CVPR'05) - Volume 2, (Washington, DC, USA), Pp. 924-"}, {"category_id": 15, "poly": [912.0, 1863.0, 1247.0, 1863.0, 1247.0, 1895.0, 912.0, 1895.0], "score": 0.98, "text": "931, IEEE Computer Society, 2005."}, {"category_id": 15, "poly": [873.0, 1891.0, 1568.0, 1891.0, 1568.0, 1923.0, 873.0, 1923.0], "score": 0.97, "text": "[5] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, \u201cHigh-quality real-"}, {"category_id": 15, "poly": [912.0, 1916.0, 1566.0, 1916.0, 1566.0, 1946.0, 912.0, 1946.0], "score": 0.99, "text": "time stereo using adaptive cost aggregation and dynamic programming,\""}, {"category_id": 15, "poly": [910.0, 1936.0, 1568.0, 1939.0, 1568.0, 1971.0, 910.0, 1969.0], "score": 0.94, "text": "in 3DPVT'06:Proceedings of the Third International Symposium"}, {"category_id": 15, "poly": [915.0, 1964.0, 1568.0, 1964.0, 1568.0, 1996.0, 915.0, 1996.0], "score": 0.98, "text": "on 3D Data Processing, Visualization, and Transmission (3DPVT'06),"}, {"category_id": 15, "poly": [915.0, 1989.0, 1564.0, 1989.0, 1564.0, 2021.0, 915.0, 2021.0], "score": 1.0, "text": "(Washington, DC, USA), Pp. 798-805, IEEE Computer Society, 2006."}, {"category_id": 15, "poly": [1134.0, 1471.0, 1296.0, 1471.0, 1296.0, 1510.0, 1134.0, 1510.0], "score": 1.0, "text": "REFERENCES"}, {"category_id": 15, "poly": [159.0, 1888.0, 836.0, 1888.0, 836.0, 1920.0, 159.0, 1920.0], "score": 0.99, "text": "The algorithm was implement using NVIDIA's Compute"}, {"category_id": 15, "poly": [134.0, 1920.0, 834.0, 1920.0, 834.0, 1950.0, 134.0, 1950.0], "score": 0.98, "text": "Unified Device Architecture (CUDA). The details of the im-"}, {"category_id": 15, "poly": [129.0, 1948.0, 841.0, 1950.0, 841.0, 1989.0, 129.0, 1987.0], "score": 0.98, "text": " plementation are similar to those given in [3]. When compared "}, {"category_id": 15, "poly": [132.0, 1989.0, 836.0, 1989.0, 836.0, 2021.0, 132.0, 2021.0], "score": 0.99, "text": "to other existing real-time stereo matching implementations,"}, {"category_id": 15, "poly": [1111.0, 1022.0, 1317.0, 1022.0, 1317.0, 1061.0, 1111.0, 1061.0], "score": 1.0, "text": "V. CONCLUSION"}, {"category_id": 15, "poly": [864.0, 484.0, 1564.0, 484.0, 1564.0, 516.0, 864.0, 516.0], "score": 0.99, "text": "Table II: A comparison of speed and accuracy for the imple-"}, {"category_id": 15, "poly": [864.0, 518.0, 1564.0, 518.0, 1564.0, 550.0, 864.0, 550.0], "score": 0.99, "text": "mentations of many leading real-time stereo matching meth-"}, {"category_id": 15, "poly": [862.0, 550.0, 917.0, 550.0, 917.0, 584.0, 862.0, 584.0], "score": 0.96, "text": "ods."}, {"category_id": 15, "poly": [864.0, 484.0, 1564.0, 484.0, 1564.0, 516.0, 864.0, 516.0], "score": 0.99, "text": "Table II: A comparison of speed and accuracy for the imple-"}, {"category_id": 15, "poly": [864.0, 518.0, 1564.0, 518.0, 1564.0, 550.0, 864.0, 550.0], "score": 0.99, "text": "mentations of many leading real-time stereo matching meth-"}, {"category_id": 15, "poly": [862.0, 550.0, 917.0, 550.0, 917.0, 584.0, 862.0, 584.0], "score": 0.96, "text": "ods."}], "page_info": {"page_no": 4, "height": 2200, "width": 1700}}, {"layout_dets": [{"category_id": 1, "poly": [134.58497619628906, 157.681884765625, 841.3460693359375, 157.681884765625, 841.3460693359375, 1666.27001953125, 134.58497619628906, 1666.27001953125], "score": 0.9999936819076538}, {"category_id": 15, "poly": [143.0, 163.0, 838.0, 163.0, 838.0, 192.0, 143.0, 192.0], "score": 0.97, "text": "[6] W. Yu, T. Chen, F. Franchetti, and J. C. Hoe, \u201cHigh performance stereo"}, {"category_id": 15, "poly": [182.0, 188.0, 838.0, 188.0, 838.0, 218.0, 182.0, 218.0], "score": 0.98, "text": "vision designed for massively data parallel platforms,\u2019 Circuits and"}, {"category_id": 15, "poly": [182.0, 213.0, 841.0, 213.0, 841.0, 245.0, 182.0, 245.0], "score": 0.98, "text": "Systems for Video Technology, IEEE Transactions on, vol. 20, pp. 1509"}, {"category_id": 15, "poly": [182.0, 238.0, 411.0, 238.0, 411.0, 268.0, 182.0, 268.0], "score": 0.98, "text": "-1519, November 2010."}, {"category_id": 15, "poly": [143.0, 264.0, 838.0, 264.0, 838.0, 293.0, 143.0, 293.0], "score": 0.99, "text": "[7] S. Mattoccia, M. Viti, and F. Ries, \u201cNear real-time fast bilateral stereo"}, {"category_id": 15, "poly": [182.0, 289.0, 838.0, 289.0, 838.0, 319.0, 182.0, 319.0], "score": 0.96, "text": "on the GPU in Computer Vision and Pattern Recognition Workshops"}, {"category_id": 15, "poly": [178.0, 307.0, 841.0, 309.0, 841.0, 348.0, 178.0, 346.0], "score": 0.95, "text": "(CVPRW), 2011 IEEE Computer Society Conference on,Ppp. 136 -143,"}, {"category_id": 15, "poly": [185.0, 339.0, 289.0, 339.0, 289.0, 364.0, 185.0, 364.0], "score": 0.98, "text": "June 2011."}, {"category_id": 15, "poly": [141.0, 362.0, 838.0, 362.0, 838.0, 392.0, 141.0, 392.0], "score": 0.98, "text": "[8] K. Zhang, J. Lu, Q. Yang, G. Lafruit, R. Lauwereins, and L. Van Gool,"}, {"category_id": 15, "poly": [182.0, 387.0, 838.0, 387.0, 838.0, 419.0, 182.0, 419.0], "score": 0.98, "text": "\"Real-time and accurate stereo: A scalable approach with bitwise fast"}, {"category_id": 15, "poly": [185.0, 412.0, 838.0, 412.0, 838.0, 445.0, 185.0, 445.0], "score": 0.97, "text": "voting on CUDA,\u201d Circuits and Systems for Video Technology, IEEE"}, {"category_id": 15, "poly": [182.0, 438.0, 656.0, 438.0, 656.0, 468.0, 182.0, 468.0], "score": 0.99, "text": "Transactions on, vol. 21, pp. 867 -878, July 2011."}, {"category_id": 15, "poly": [141.0, 463.0, 838.0, 463.0, 838.0, 493.0, 141.0, 493.0], "score": 0.96, "text": "[9] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, \u201cFast cost-"}, {"category_id": 15, "poly": [182.0, 488.0, 838.0, 488.0, 838.0, 518.0, 182.0, 518.0], "score": 0.98, "text": "volume filtering for visual correspondence and beyond,\" in Computer"}, {"category_id": 15, "poly": [180.0, 509.0, 841.0, 511.0, 841.0, 543.0, 180.0, 541.0], "score": 0.95, "text": "Vision and Pattern Recognition (CVPR), 20ll IEEE Conference on,"}, {"category_id": 15, "poly": [180.0, 536.0, 448.0, 534.0, 448.0, 566.0, 180.0, 568.0], "score": 0.99, "text": "Pp. 3017 -3024, June 2011."}, {"category_id": 15, "poly": [134.0, 561.0, 838.0, 561.0, 838.0, 591.0, 134.0, 591.0], "score": 0.99, "text": "[10] A. Hosni, C. Rhemann, M. Bleyer, and M. Gelautz, \u201cTemporally con-"}, {"category_id": 15, "poly": [180.0, 587.0, 836.0, 587.0, 836.0, 616.0, 180.0, 616.0], "score": 0.99, "text": " sistent disparity and optical flow via efficient spatio-temporal filtering,\""}, {"category_id": 15, "poly": [182.0, 612.0, 838.0, 612.0, 838.0, 642.0, 182.0, 642.0], "score": 0.97, "text": "in Advances in Image and Video Technology (Y.-S. Ho, ed.), vol. 7087"}, {"category_id": 15, "poly": [180.0, 632.0, 845.0, 632.0, 845.0, 671.0, 180.0, 671.0], "score": 0.88, "text": "of Lectureotes inComputer Science,pp.16517,Springererlin /"}, {"category_id": 15, "poly": [182.0, 660.0, 353.0, 660.0, 353.0, 692.0, 182.0, 692.0], "score": 1.0, "text": "Heidelberg, 2012."}, {"category_id": 15, "poly": [134.0, 685.0, 838.0, 685.0, 838.0, 717.0, 134.0, 717.0], "score": 0.98, "text": "[11] C. Tomasi and R. Manduchi, \u201cBilateral filtering for gray and color"}, {"category_id": 15, "poly": [182.0, 710.0, 838.0, 710.0, 838.0, 742.0, 182.0, 742.0], "score": 0.98, "text": "images,\u201d in Computer Vision, 1998. Sixth International Conference on,"}, {"category_id": 15, "poly": [180.0, 736.0, 411.0, 731.0, 411.0, 763.0, 181.0, 768.0], "score": 0.93, "text": "pPp. 839 -846, jan 1998."}, {"category_id": 15, "poly": [132.0, 761.0, 838.0, 761.0, 838.0, 791.0, 132.0, 791.0], "score": 0.97, "text": "[12] K. He, J. Sun, and X. Tang, \u201cGuided image filtering,\u201d\u2019 in Computer"}, {"category_id": 15, "poly": [180.0, 784.0, 838.0, 786.0, 838.0, 818.0, 180.0, 816.0], "score": 0.98, "text": "Vision - ECCV 2010, vol. 6311 of Lecture Notes in Computer Science,"}, {"category_id": 15, "poly": [180.0, 811.0, 607.0, 807.0, 608.0, 839.0, 180.0, 843.0], "score": 0.98, "text": "pp. 1-14, Springer Berlin / Heidelberg, 2010."}, {"category_id": 15, "poly": [129.0, 832.0, 839.0, 837.0, 838.0, 869.0, 129.0, 864.0], "score": 0.98, "text": "[13] L. Zhang, B. Curless, and S. M. Seitz, \u201cSpacetime stereo: Shape"}, {"category_id": 15, "poly": [182.0, 862.0, 836.0, 862.0, 836.0, 891.0, 182.0, 891.0], "score": 0.98, "text": "recovery for dynamic scenes,\u201d in IEEE Computer Society Conference"}, {"category_id": 15, "poly": [182.0, 885.0, 834.0, 885.0, 834.0, 917.0, 182.0, 917.0], "score": 0.97, "text": "on Computer Vision and Pattern Recognition, pp. 367-374, June 2003."}, {"category_id": 15, "poly": [132.0, 910.0, 838.0, 910.0, 838.0, 940.0, 132.0, 940.0], "score": 0.98, "text": "[14] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, \u201cSpacetime"}, {"category_id": 15, "poly": [182.0, 935.0, 838.0, 935.0, 838.0, 965.0, 182.0, 965.0], "score": 0.97, "text": "stereo: a unifying framework for depth from triangulation,\u201d\u2019 Pattern"}, {"category_id": 15, "poly": [182.0, 960.0, 838.0, 960.0, 838.0, 990.0, 182.0, 990.0], "score": 0.98, "text": "Analysis and Machine Intelligence, IEEE Transactions on,vol. 27,"}, {"category_id": 15, "poly": [180.0, 983.0, 462.0, 983.0, 462.0, 1015.0, 180.0, 1015.0], "score": 0.97, "text": "Pp. 296 -302, February 2005."}, {"category_id": 15, "poly": [132.0, 1011.0, 838.0, 1011.0, 838.0, 1040.0, 132.0, 1040.0], "score": 0.99, "text": "[15] E. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, \u201cTemporally"}, {"category_id": 15, "poly": [182.0, 1036.0, 836.0, 1036.0, 836.0, 1066.0, 182.0, 1066.0], "score": 0.99, "text": "consistent reconstruction from multiple video streams using enhanced"}, {"category_id": 15, "poly": [178.0, 1054.0, 843.0, 1056.0, 843.0, 1095.0, 178.0, 1093.0], "score": 0.95, "text": "belief propagation in Computer Vision, 2007.ICCV 2007. IEEE1lth"}, {"category_id": 15, "poly": [180.0, 1082.0, 644.0, 1082.0, 644.0, 1121.0, 180.0, 1121.0], "score": 0.97, "text": "International Conference on, pp. 1 -8, oct. 2007."}, {"category_id": 15, "poly": [134.0, 1109.0, 838.0, 1109.0, 838.0, 1141.0, 134.0, 1141.0], "score": 0.97, "text": "[16] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann, \u201c\"A stereo approach"}, {"category_id": 15, "poly": [180.0, 1134.0, 838.0, 1134.0, 838.0, 1166.0, 180.0, 1166.0], "score": 0.99, "text": "that handles the mating problem via image warping\" in Computer"}, {"category_id": 15, "poly": [182.0, 1157.0, 838.0, 1157.0, 838.0, 1189.0, 182.0, 1189.0], "score": 0.98, "text": "Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference"}, {"category_id": 15, "poly": [180.0, 1183.0, 459.0, 1175.0, 460.0, 1212.0, 181.0, 1219.0], "score": 0.98, "text": "on, pp. 501 -508, June 2009."}, {"category_id": 15, "poly": [129.0, 1205.0, 838.0, 1208.0, 838.0, 1240.0, 129.0, 1237.0], "score": 0.98, "text": " [17] M. Sizintsev and R. Wildes, \u201cSpatiotemporal stereo via spatiotemporal"}, {"category_id": 15, "poly": [182.0, 1235.0, 838.0, 1235.0, 838.0, 1265.0, 182.0, 1265.0], "score": 0.97, "text": "quadric element (stequel) matching,\u201d in Computer Vision and Pattern"}, {"category_id": 15, "poly": [185.0, 1258.0, 841.0, 1258.0, 841.0, 1290.0, 185.0, 1290.0], "score": 0.98, "text": "Recognition, 2009. CVPR 2009. IEEE Conference on, Pp. 493 -500,"}, {"category_id": 15, "poly": [185.0, 1286.0, 286.0, 1286.0, 286.0, 1311.0, 185.0, 1311.0], "score": 0.99, "text": "june 2009."}, {"category_id": 15, "poly": [132.0, 1309.0, 838.0, 1309.0, 838.0, 1338.0, 132.0, 1338.0], "score": 0.97, "text": "[18] M. Sizintsev and R. Wildes, \u201cSpatiotemporal stereo and scene flow via"}, {"category_id": 15, "poly": [182.0, 1334.0, 841.0, 1334.0, 841.0, 1364.0, 182.0, 1364.0], "score": 0.97, "text": "stequel matching,\u201d\u2019Pattern Analysis and Machine Intelligence, IEEE"}, {"category_id": 15, "poly": [182.0, 1359.0, 684.0, 1359.0, 684.0, 1391.0, 182.0, 1391.0], "score": 1.0, "text": "Transactions on, vol. 34, pp. 1206 -1219, june 2012."}, {"category_id": 15, "poly": [132.0, 1382.0, 834.0, 1382.0, 834.0, 1412.0, 132.0, 1412.0], "score": 0.98, "text": "[19] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson,"}, {"category_id": 15, "poly": [185.0, 1409.0, 838.0, 1409.0, 838.0, 1441.0, 185.0, 1441.0], "score": 0.98, "text": "\"Real-time spatiotemporal stereo matching using the dual-cross-bilateral"}, {"category_id": 15, "poly": [182.0, 1432.0, 838.0, 1432.0, 838.0, 1464.0, 182.0, 1464.0], "score": 0.95, "text": "grid,\" in Proceedings of the European Conference on Computer Vision"}, {"category_id": 15, "poly": [182.0, 1458.0, 838.0, 1458.0, 838.0, 1490.0, 182.0, 1490.0], "score": 0.98, "text": "(ECCV), Lecture Notes in Computer Science, pp. 510-523, September"}, {"category_id": 15, "poly": [182.0, 1477.0, 243.0, 1483.0, 241.0, 1511.0, 179.0, 1505.0], "score": 1.0, "text": "2010."}, {"category_id": 15, "poly": [134.0, 1508.0, 836.0, 1508.0, 836.0, 1538.0, 134.0, 1538.0], "score": 0.98, "text": "[20] S. Paris and F. Durand, \u201cA fast approximation of the bilateral filter using"}, {"category_id": 15, "poly": [182.0, 1533.0, 836.0, 1533.0, 836.0, 1565.0, 182.0, 1565.0], "score": 0.98, "text": "a signal processing approach,\u201d Int. J. Comput. Vision, vol. 81, pp. 24-52,"}, {"category_id": 15, "poly": [185.0, 1561.0, 282.0, 1561.0, 282.0, 1586.0, 185.0, 1586.0], "score": 0.98, "text": "Jan. 2009."}, {"category_id": 15, "poly": [134.0, 1584.0, 836.0, 1584.0, 836.0, 1613.0, 134.0, 1613.0], "score": 0.98, "text": "[21] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nist\u00e9r, \u201cReal-"}, {"category_id": 15, "poly": [182.0, 1609.0, 838.0, 1609.0, 838.0, 1641.0, 182.0, 1641.0], "score": 0.98, "text": "time global stereo matching using hierarchical belief propagation.\u201d in"}, {"category_id": 15, "poly": [182.0, 1634.0, 698.0, 1634.0, 698.0, 1666.0, 182.0, 1666.0], "score": 1.0, "text": "British Machine Vision Conference, pp. 989-998, 2006."}], "page_info": {"page_no": 5, "height": 2200, "width": 1700}}] \ No newline at end of file