import httpcore setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy') #Beta3-2025: 加入了一些常用的模型,以及將分享按鈕開啟 import gradio as gr from googletrans import Translator from huggingface_hub import InferenceClient from PIL import Image import time # 定義模型名稱列表 # Define model names list models =[ "Yntec/NostalgicLife", "Yntec/Genuine", "Yntec/Abased", "Yntec/CuteFurry", "Yntec/Isabelia", "Yntec/incha_re_zoro", "Yntec/InsaneM3U", "digiplay/2K", "digiplay/2K-VAE", "digiplay/ya3_VAE", "digiplay/ya3p_VAE", "digiplay/pan04", "digiplay/AM-mix1", "digiplay/MRMD_0505", ] # 初始化 Google 翻譯器 # Initialize Google translator translator = Translator() # 定義翻譯函數 # Define translation function def translate_to_english(prompt): try: translated_prompt = translator.translate(prompt, src='auto', dest='en').text return translated_prompt except Exception as e: return str(e) # 修改 respond_with_timestamp 函數,使其返回三個圖片對象 # Modify the respond_with_timestamp function to return three image objects def respond_with_timestamp(prompt, model_name): client = InferenceClient(model=model_name) # 將提示詞翻譯成英文 Translate prompt to English translated_prompt = translate_to_english(prompt) # 使用時間戳記加在提示語後面 prompt_with_timestamps = [f"{translated_prompt} {time.time() + i}" for i in range(3)] # 生成三張圖片 Generate 3 images images = [client.text_to_image(text) for text in prompt_with_timestamps] # 直接返回這三個圖片對象 # Return image objects directly return images # 建立和啟動 Gradio 介面 # Build and launch Gradio interface demo = gr.Interface( fn=respond_with_timestamp, inputs=[ gr.Textbox(label="請輸入提示語 Please input a prompt"), gr.Dropdown(label="選擇模型 Choose a model", choices=models) ], outputs=[gr.Image(type="pil", label=f"img-{i+1}", show_share_button = True) for i in range(3)], # 顯示三張圖片 Display three images title="Text-to-Image with Google Translation", description="