import gradio as gr import networkx as nx import pydot import pandas as pd def calculate_parameters(dot_file): # Read the dot file with specified encoding with open(dot_file.name, 'r', encoding='utf-8') as f: dot_data = f.read() # Parse dot data using pydot graphs = pydot.graph_from_dot_data(dot_data) G = nx.nx_pydot.from_pydot(graphs[0]) # Initialize the list of lengths and the node-to-index map all_lengths = [0] * len(G.nodes()) node_to_index = {node: i for i, node in enumerate(G.nodes())} # Calculate absolute depth (Dabs) and depth of each node for node in nx.topological_sort(G): if G.in_degree(node) > 0: # This node has a predecessor all_lengths[node_to_index[node]] = max(all_lengths[node_to_index[n]]+1 for n in G.predecessors(node)) Dabs = sum(all_lengths) # Create node depth dictionary node_depth = {node: all_lengths[node_to_index[node]] for node in G.nodes()} # Calculate maximum depth (Dmax) Dmax = max(all_lengths) # Calculate average depth (Davg) Davg = Dabs / len(all_lengths) # Calculate absolute width (Wabs) Wabs = len(G.nodes()) # Calculate maximum width (Wmax) level_count = [all_lengths.count(i) for i in set(all_lengths)] Wmax = max(level_count) # Calculate average width (Wavg) Wavg = Wabs / len(set(all_lengths)) # Create a DataFrame for better visualization df = pd.DataFrame.from_dict(node_depth, orient='index', columns=['Depth']) df_str = df.to_string() result_str = (f"Node Depths:\n{df_str}\n\nFinal Calculations:\n" f"Dabs = {Dabs}, Dmax = {Dmax}, Davg = {Davg:.3f}\n" f"Wabs = {Wabs}, Wmax = {Wmax}, Wavg = {Wavg:.3f}") return result_str iface = gr.Interface(fn=calculate_parameters, inputs=gr.inputs.File(label="Upload .dot file"), outputs="text") iface.launch()