import gradio as gr from icevision.all import * import PIL class_map = ClassMap(['kangaroo']) model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet50_fpn, num_classes=len(class_map)) state_dict = torch.load('fasterRCNNKangaroo.pth') model.load_state_dict(state_dict) infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()]) size = 384 def predict(img): img = PILImage.create(img) pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict['img'] # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(),examples=['00004.jpg','00083.jpg', '00119.jpg']).launch(share=False)