from fastai.vision.all import * learn = load_learner('export.pkl') # searches = 'steve minecraft','herobrine minecraft' def sanity_check(): for o in searches: category,_,probs = learn.predict(PILImage.create(f'{o}.jpg')) print(f"This is a: {category}.") print(f"Probability it's a {category}: {probs[0]:.4f}") # sanity_check() labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} import os os.system("pip install --upgrade --force-reinstall gradio==3.50") import gradio as gr gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), examples = [ 'steve minecraft.jpg', 'herobrine minecraft.jpg' ], interpertation='default', outputs=gr.outputs.Label(num_top_classes=3) ).launch(share=True)