import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer directly model_name = "jdowling/lora_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Move the model to the appropriate device (GPU if available, else CPU) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare prompt with history messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Convert conversation into a single input string prompt = f"{system_message}\n" for turn in messages[1:]: if turn["role"] == "user": prompt += f"User: {turn['content']}\n" elif turn["role"] == "assistant": prompt += f"Assistant: {turn['content']}\n" prompt += "Assistant:" # Tokenize input inputs = tokenizer(prompt, return_tensors="pt").to(device) # Generate response output = model.generate( inputs["input_ids"], max_length=inputs["input_ids"].shape[1] + max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, ) # Decode response and extract the new assistant message response = tokenizer.decode(output[0], skip_special_tokens=True) response = response[len(prompt):].strip() # Strip the input part from the response yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()