import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load your model and tokenizer from Hugging Face Hub (forcing CPU usage) # model_name = "PierreJousselin/lora_model" # Replace with the name you used on Hugging Face # model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu") # Force model to load on CPU model_id = "unsloth/Phi-3.5-mini-instruct" peft_model_id = "eronariodito/SFT_LAB2_ID2223" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) # Ensure pad_token_id is set to eos_token_id to avoid errors model.config.pad_token_id = model.config.eos_token_id # Function for generating responses using the model def generate_response(prompt): # Tokenize input prompt inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128) # Ensure the inputs are moved to the CPU input_ids = inputs["input_ids"].to("cpu") print(input_ids) # Generate output (ensure it's on CPU) output = model.generate(input_ids, max_length=150, num_return_sequences=1,pad_token_id=tokenizer.eos_token_id) # Decode and return response response = tokenizer.decode(output[0], skip_special_tokens=True) print(output) return response # Create a Gradio interface with a "Generate" button iface = gr.Interface( fn=generate_response, # Function to call for generating response inputs=gr.Textbox(label="Input Prompt"), # Input type (text box for prompt) outputs=gr.Textbox(label="Generated Response"), # Output type (text box for response) live=False, # Disable live update; only update when button is clicked allow_flagging="never" # Prevent flagging (optional, if you don't need it) ) # Launch the interface with a "Generate" button iface.launch(share=True) # You can set share=True if you want a public link