""" app.py - the main file for the app. This creates the flask app and handles the routes. """ import argparse import logging import os import sys import time import warnings from os.path import dirname from pathlib import Path import gradio as gr import nltk import torch from cleantext import clean from gradio.inputs import Slider, Textbox from transformers import pipeline from converse import discussion from grammar_improve import ( build_symspell_obj, detect_propers, fix_punct_spacing, load_ns_checker, neuspell_correct, remove_repeated_words, remove_trailing_punctuation, symspeller, synthesize_grammar, ) from utils import corr nltk.download("stopwords") # download stopwords sys.path.append(dirname(dirname(os.path.abspath(__file__)))) warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*") import transformers transformers.logging.set_verbosity_error() logging.basicConfig() cwd = Path.cwd() my_cwd = str(cwd.resolve()) # string so it can be passed to os.path() objects def chat(prompt_message, temperature=0.7, top_p=0.95, top_k=50): """ chat - helper function that makes the whole gradio thing work. Args: trivia_query (str): the question to ask the bot Returns: [str]: the bot's response """ history = [] response = ask_gpt( message=prompt_message, chat_pipe=my_chatbot, top_p=top_p, top_k=top_k, temperature=temperature, ) history = [prompt_message, response] html = "" for item in history: html += f"{item}

" html += "" return html def ask_gpt( message: str, chat_pipe, speaker="person alpha", responder="person beta", max_len=96, top_p=0.95, top_k=25, temperature=0.6, ): """ ask_gpt - a function that takes in a prompt and generates a response using the pipeline. This interacts the discussion function. Parameters: message (str): the question to ask the bot chat_pipe (str): the chat_pipe to use for the bot (default: "pszemraj/Ballpark-Trivia-XL") speaker (str): the name of the speaker (default: "person alpha") responder (str): the name of the responder (default: "person beta") max_len (int): the maximum length of the response (default: 128) top_p (float): the top probability threshold (default: 0.95) top_k (int): the top k threshold (default: 50) temperature (float): the temperature of the response (default: 0.7) """ st = time.perf_counter() prompt = clean(message) # clean user input prompt = prompt.strip() # get rid of any extra whitespace in_len = len(prompt) if in_len > 512: prompt = prompt[-512:] # truncate to 512 chars print(f"Truncated prompt to last 512 chars: started with {in_len} chars") max_len = min(max_len, 512) resp = discussion( prompt_text=prompt, pipeline=chat_pipe, speaker=speaker, responder=responder, top_p=top_p, top_k=top_k, temperature=temperature, max_length=max_len, ) gpt_et = time.perf_counter() gpt_rt = round(gpt_et - st, 2) rawtxt = resp["out_text"] # check for proper nouns if basic_sc: cln_resp = symspeller(rawtxt, sym_checker=schnellspell) else: cln_resp = synthesize_grammar(corrector=grammarbot, message=cln_resp) bot_resp_a = corr(remove_repeated_words(cln_resp)) bot_resp = fix_punct_spacing(bot_resp_a) print(f"the prompt was:\n\t{message}\nand the response was:\n\t{bot_resp}\n") corr_rt = round(time.perf_counter() - gpt_et, 4) print( f"took {gpt_rt + corr_rt} sec to respond, {gpt_rt} for GPT, {corr_rt} for correction\n" ) return remove_trailing_punctuation(bot_resp) def get_parser(): """ get_parser - a helper function for the argparse module """ parser = argparse.ArgumentParser( description="submit a question, GPT model responds" ) parser.add_argument( "-m", "--model", required=False, type=str, default="ethzanalytics/ai-msgbot-gpt2-XL", # default model help="the model to use for the chatbot on https://huggingface.co/models OR a path to a local model", ) parser.add_argument( "--gram-model", required=False, type=str, default="pszemraj/t5-v1_1-base-ft-jflAUG", help="text2text generation model ID from huggingface for the model to correct grammar", ) parser.add_argument( "--basic-sc", required=False, default=False, # TODO: change this back to False once Neuspell issues are resolved. action="store_true", help="turn on symspell (baseline) correction instead of the more advanced neural net models", ) parser.add_argument( "--verbose", action="store_true", default=False, help="turn on verbose logging", ) return parser if __name__ == "__main__": args = get_parser().parse_args() default_model = str(args.model) model_loc = Path(default_model) # if the model is a path, use it basic_sc = args.basic_sc # whether to use the baseline spellchecker gram_model = str(args.gram_model) device = 0 if torch.cuda.is_available() else -1 print(f"CUDA avail is {torch.cuda.is_available()}") my_chatbot = ( pipeline("text-generation", model=model_loc.resolve(), device=device) if model_loc.exists() and model_loc.is_dir() else pipeline("text-generation", model=default_model, device=device) ) # if the model is a name, use it. stays on CPU if no GPU available print(f"using model {my_chatbot.model}") if basic_sc: print("Using the baseline spellchecker") schnellspell = build_symspell_obj() else: print("using neural spell checker") grammarbot = pipeline("text2text-generation", gram_model, device=device) print(f"using model stored here: \n {model_loc} \n") iface = gr.Interface( chat, inputs=[ Textbox( default="Why is everyone here eating chocolate cake?", label="prompt_message", placeholder="Enter a question", lines=2, ), Slider( minimum=0.0, maximum=1.0, step=0.01, default=0.6, label="temperature" ), Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.95, label="top_p"), Slider(minimum=0, maximum=100, step=5, default=20, label="top_k"), ], outputs="html", examples_per_page=8, examples=[ ["Point Break or Bad Boys II?", 0.75, 0.95, 50], ["So... you're saying this wasn't an accident?", 0.6, 0.95, 50], ["Hi, my name is Reginald", 0.6, 0.95, 100], ["Happy birthday!", 0.9, 0.95, 50], ["I have a question, can you help me?", 0.6, 0.95, 50], ["Do you know a joke?", 0.8, 0.85, 50], ["Will you marry me?", 0.9, 0.95, 100], ["Are you single?", 0.6, 0.95, 100], ["Do you like people?", 0.7, 0.95, 25], ["You never took a short cut before?", 0.7, 0.95, 100], ], title=f"GPT Chatbot Demo: {default_model} Model", description=f"A Demo of a Chatbot trained for conversation with humans. Size XL= 1.5B parameters.\n\n" "**Important Notes & About:**\n\n" "You can find a link to the model card **[here](https://huggingface.co/ethzanalytics/ai-msgbot-gpt2-XL-dialogue)**\n\n" "1. responses can take up to 60 seconds to respond sometimes, patience is a virtue.\n" "2. the model was trained on several different datasets. fact-check responses instead of regarding as a true statement.\n" "3. Try adjusting the **[generation parameters](https://huggingface.co/blog/how-to-generate)** to get a better understanding of how they work!\n", css=""" .chatbox {display:flex;flex-direction:row} .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} .user_msg {background-color:cornflowerblue;color:white;align-self:start} .resp_msg {background-color:lightgray;align-self:self-end} """, allow_screenshot=True, allow_flagging="never", theme="dark", ) # launch the gradio interface and start the server iface.launch( # prevent_thread_lock=True, enable_queue=True, # also allows for dealing with multiple users simultaneously (per newer gradio version) )