import os import sys import numpy as np import pandas as pd from projects.ML_StudentPerformance.src.exception import CustomException from sklearn.metrics import r2_score import dill def save_object(file_path, obj): try: dir_path = os.path.dirname(file_path) os.makedirs(dir_path, exist_ok = True) with open (file_path, 'wb') as file_obj: dill.dump(obj, file_obj) except Exception as e: raise CustomException(e,sys) def evaluate_models(x_train, y_train, x_test, y_test, models): try: report = {} for i in range(len(list(models))): model = list(models.values())[i] model.fit(x_train, y_train) y_train_pred = model.predict(x_train) y_test_pred = model.predict(x_test) train_model_score = r2_score(y_train, y_train_pred) test_model_score = r2_score(y_test,y_test_pred) report[list(models.keys())[i]] = test_model_score return report except Exception as e: raise CustomException(e,sys) def load_object(file_path): try: with open(file_path, 'rb') as file_obj: return dill.load(file_obj) except Exception as e: raise CustomException(e,sys)