from flask import Flask, request, render_template import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from src.pipelines.predict_pipeline import CustomData, PredictPipeline application = Flask(__name__) app = application # Route for home page @app.route('/') def index(): return render_template('index.html') @app.route('/predictdata',methods=['GET','POST']) def predict_datapoint(): if request.method == 'GET': return render_template('home.html') else: data = CustomData( gender=request.form.get('gender'), race_ethnicity=request.form.get('ethnicity'), parental_level_of_education=request.form.get('parental_level_of_education'), lunch=request.form.get('lunch'), test_preparation_course=request.form.get('test_preparation_course'), reading_score=float(request. form. get('writing_score')), writing_score=float(request. form.get('reading_score')) ) pred_df = data.get_data_as_dataframe() print(pred_df) predict_pipeline = PredictPipeline() results = predict_pipeline.predict(pred_df) return render_template('home.html',results = results[0]) if __name__=='__main__': app.run('0.0.0.0')