# MIT License # # Copyright (c) 2022- CNRS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import io import base64 import numpy as np import scipy.io.wavfile from typing import Text import streamlit as st from pyannote.audio import Pipeline from pyannote.audio import Audio from pyannote.audio.pipelines.utils.hook import TimingHook from pyannote.core import Segment import streamlit.components.v1 as components def to_base64(waveform: np.ndarray, sample_rate: int = 16000) -> Text: """Convert waveform to base64 data""" waveform /= np.max(np.abs(waveform)) + 1e-8 with io.BytesIO() as content: scipy.io.wavfile.write(content, sample_rate, waveform) content.seek(0) b64 = base64.b64encode(content.read()).decode() b64 = f"data:audio/x-wav;base64,{b64}" return b64 PYANNOTE_LOGO = "https://avatars.githubusercontent.com/u/7559051?s=400&v=4" EXCERPT = 120 st.set_page_config(page_title="pyannote pretrained pipelines", page_icon=PYANNOTE_LOGO) col1, col2 = st.columns([0.2, 0.8], gap="small") with col1: st.image(PYANNOTE_LOGO) with col2: st.markdown( """ # pretrained pipelines Make the most of [pyannote](https://github.com/pyannote) thanks to our [consulting services](https://herve.niderb.fr/consulting.html) """ ) PIPELINES = [ "pyannote/speaker-diarization-3.1", "pyannote/speaker-diarization-3.0", ] audio = Audio(sample_rate=16000, mono=True) selected_pipeline = st.selectbox("Select a pretrained pipeline", PIPELINES, index=0) with st.spinner("Loading pipeline..."): try: use_auth_token = st.secrets["PYANNOTE_TOKEN"] except FileNotFoundError: use_auth_token = None except KeyError: use_auth_token = None pipeline = Pipeline.from_pretrained( selected_pipeline, use_auth_token=use_auth_token ) if torch.cuda.is_available(): pipeline.to(torch.device("cuda")) uploaded_file = st.file_uploader("Upload an audio file") if uploaded_file is not None: try: duration = audio.get_duration(uploaded_file) except RuntimeError as e: st.error(e) st.stop() spinner_message = ( f"Processing {duration:.0f}s file... " if duration < EXCERPT else f"Processing first {EXCERPT:.0f}s of file..." ) duration = min(duration, EXCERPT) waveform, sample_rate = audio.crop(uploaded_file, Segment(0, duration)) uri = "".join(uploaded_file.name.split()) file = {"waveform": waveform, "sample_rate": sample_rate, "uri": uri} with st.spinner(spinner_message): with TimingHook() as hook: output = pipeline(file, hook=hook) processing_time = file["timing"]["total"] faster_than_real_time = duration / processing_time st.success( f"Processed {duration:.0f}s of audio in {processing_time:.1f}s ({faster_than_real_time:.1f}x faster than real-time)", icon="✅", ) with open("assets/template.html") as html, open("assets/style.css") as css: html_template = html.read() st.markdown("".format(css.read()), unsafe_allow_html=True) colors = [ "#ffd70033", "#00ffff33", "#ff00ff33", "#00ff0033", "#9932cc33", "#00bfff33", "#ff7f5033", "#66cdaa33", ] num_colors = len(colors) label2color = { label: colors[k % num_colors] for k, label in enumerate(sorted(output.labels())) } BASE64 = to_base64(waveform.numpy().T) REGIONS = "" for segment, _, label in output.itertracks(yield_label=True): REGIONS += f"regions.addRegion({{start: {segment.start:g}, end: {segment.end:g}, color: '{label2color[label]}', resize : false, drag : false}});" html = html_template.replace("BASE64", BASE64).replace("REGIONS", REGIONS) components.html(html, height=250, scrolling=True) with io.StringIO() as fp: output.write_rttm(fp) content = fp.getvalue() b64 = base64.b64encode(content.encode()).decode() href = f'Download result in RTTM file format or run it locally:' st.markdown(href, unsafe_allow_html=True) code = f""" # load pretrained pipeline from pyannote.audio import Pipeline pipeline = Pipeline.from_pretrained("{selected_pipeline}", use_auth_token=HUGGINGFACE_TOKEN) # (optional) send pipeline to GPU import torch pipeline.to(torch.device("cuda")) # process audio file output = pipeline("audio.wav")""" st.code(code, language="python")