import os import gradio as gr import torch from transformers import pipeline from utils import clean_text pipeline = pipeline( task="text-classification", model="fakespotailabs/roberta-base-ai-text-detection-v1", device="cuda" if torch.cuda.is_available() else "cpu", token=os.environ.get("ACCESS_TOKEN") ) def predict(text): cleaned_text = clean_text(text) predictions = pipeline(cleaned_text, top_k=None)[0] return { p["label"]: p["score"] for p in predictions } demo = gr.Interface( predict, inputs=gr.Textbox(), outputs=gr.Label(num_top_classes=2), title="AI Text Detector" ) demo.launch()