import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from einops import pack, rearrange, repeat from diffusers.models.activations import get_activation from fireredtts.modules.flow.transformer import BasicTransformerBlock class SinusoidalPosEmb(torch.nn.Module): def __init__(self, dim): super().__init__() self.dim = dim assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" def forward(self, x, scale=1000): if x.ndim < 1: x = x.unsqueeze(0) device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class Block1D(torch.nn.Module): def __init__(self, dim, dim_out, groups=8): super().__init__() self.block = torch.nn.Sequential( torch.nn.Conv1d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), nn.Mish(), ) def forward(self, x, mask): output = self.block(x * mask) return output * mask class ResnetBlock1D(torch.nn.Module): def __init__(self, dim, dim_out, time_emb_dim, groups=8): super().__init__() self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out)) self.block1 = Block1D(dim, dim_out, groups=groups) self.block2 = Block1D(dim_out, dim_out, groups=groups) self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) def forward(self, x, mask, time_emb): h = self.block1(x, mask) h += self.mlp(time_emb).unsqueeze(-1) h = self.block2(h, mask) output = h + self.res_conv(x * mask) return output class Downsample1D(nn.Module): def __init__(self, dim): super().__init__() self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1) def forward(self, x): return self.conv(x) class TimestepEmbedding(nn.Module): def __init__( self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None, post_act_fn: Optional[str] = None, cond_proj_dim=None, ): super().__init__() self.linear_1 = nn.Linear(in_channels, time_embed_dim) if cond_proj_dim is not None: self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) else: self.cond_proj = None self.act = get_activation(act_fn) if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) if post_act_fn is None: self.post_act = None else: self.post_act = get_activation(post_act_fn) def forward(self, sample, condition=None): if condition is not None: sample = sample + self.cond_proj(condition) sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) if self.post_act is not None: sample = self.post_act(sample) return sample class Upsample1D(nn.Module): """A 1D upsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. use_conv_transpose (`bool`, default `False`): option to use a convolution transpose. out_channels (`int`, optional): number of output channels. Defaults to `channels`. """ def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name self.conv = None if use_conv_transpose: self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) elif use_conv: self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) def forward(self, inputs): assert inputs.shape[1] == self.channels if self.use_conv_transpose: return self.conv(inputs) outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") if self.use_conv: outputs = self.conv(outputs) return outputs class ConditionalDecoder(nn.Module): def __init__( self, in_channels, out_channels, channels=(256, 256), dropout=0.0, attention_head_dim=64, n_blocks=4, num_mid_blocks=12, num_heads=8, act_fn="gelu", ): """ This decoder requires an input with the same shape of the target. So, if your text content is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. """ super().__init__() channels = tuple(channels) self.in_channels = in_channels self.out_channels = out_channels self.time_embeddings = SinusoidalPosEmb(in_channels) time_embed_dim = channels[0] * 4 self.time_mlp = TimestepEmbedding( in_channels=in_channels, time_embed_dim=time_embed_dim, act_fn="silu", ) self.down_blocks = nn.ModuleList([]) self.mid_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) output_channel = in_channels for i in range(len(channels)): # pylint: disable=consider-using-enumerate input_channel = output_channel output_channel = channels[i] is_last = i == len(channels) - 1 resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) downsample = ( Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) ) self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) for i in range(num_mid_blocks): input_channel = channels[-1] out_channels = channels[-1] resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) channels = channels[::-1] + (channels[0],) for i in range(len(channels) - 1): input_channel = channels[i] * 2 output_channel = channels[i + 1] is_last = i == len(channels) - 2 resnet = ResnetBlock1D( dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim, ) transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( dim=output_channel, num_attention_heads=num_heads, attention_head_dim=attention_head_dim, dropout=dropout, activation_fn=act_fn, ) for _ in range(n_blocks) ] ) upsample = ( Upsample1D(output_channel, use_conv_transpose=True) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1) ) self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) self.final_block = Block1D(channels[-1], channels[-1]) self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) self.initialize_weights() def initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.GroupNorm): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x, mask, mu, t): """Forward pass of the UNet1DConditional model. Args: x (torch.Tensor): shape (batch_size, in_channels, time) mask (_type_): shape (batch_size, 1, time) t (_type_): shape (batch_size) spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. cond (_type_, optional): placeholder for future use. Defaults to None. Raises: ValueError: _description_ ValueError: _description_ Returns: _type_: _description_ """ t = self.time_embeddings(t) t = self.time_mlp(t) x = pack([x, mu], "b * t")[0] hiddens = [] masks = [mask] for resnet, transformer_blocks, downsample in self.down_blocks: mask_down = masks[-1] x = resnet(x, mask_down, t) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down) for transformer_block in transformer_blocks: x = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() hiddens.append(x) # Save hidden states for skip connections x = downsample(x * mask_down) masks.append(mask_down[:, :, ::2]) masks = masks[:-1] mask_mid = masks[-1] for resnet, transformer_blocks in self.mid_blocks: x = resnet(x, mask_mid, t) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid) for transformer_block in transformer_blocks: x = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() for resnet, transformer_blocks, upsample in self.up_blocks: mask_up = masks.pop() skip = hiddens.pop() x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] x = resnet(x, mask_up, t) x = rearrange(x, "b c t -> b t c").contiguous() attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up) for transformer_block in transformer_blocks: x = transformer_block( hidden_states=x, attention_mask=attn_mask, timestep=t, ) x = rearrange(x, "b t c -> b c t").contiguous() x = upsample(x * mask_up) x = self.final_block(x, mask_up) output = self.final_proj(x * mask_up) return output * mask class ConditionalCFM(nn.Module): def __init__(self, estimator: nn.Module, t_scheduler: str = "cosine", inference_cfg_rate: float = 0.7, ): super().__init__() self.estimator = estimator self.t_scheduler = t_scheduler self.inference_cfg_rate = inference_cfg_rate def solve_euler(self, x, t_span, mu, mask): t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] # I am storing this because I can later plot it by putting a debugger here and saving it to a file # Or in future might add like a return_all_steps flag sol = [] for step in range(1, len(t_span)): dphi_dt = self.estimator(x, mask, mu, t) # Classifier-Free Guidance inference introduced in VoiceBox if self.inference_cfg_rate > 0: cfg_dphi_dt = self.estimator(x, mask, torch.zeros_like(mu), t) dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) x = x + dt * dphi_dt t = t + dt sol.append(x) if step < len(t_span) - 1: dt = t_span[step + 1] - t return sol[-1] def inference(self, mu, mask, n_timesteps, temperature: float=1.0): z = torch.randn_like(mu) * temperature t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) if self.t_scheduler == 'cosine': t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask)