from functools import partial import torch import numpy as np import librosa from librosa.filters import mel as librosa_mel_fn from torchaudio.functional import resample as ta_resample_fn MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases) def dynamic_range_compression(x, C=1, clip_val=1e-5): return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) def dynamic_range_decompression(x, C=1): return np.exp(x) / C def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def mel_spectrogram( y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False ): global mel_basis, hann_window if fmax not in mel_basis: mel = librosa_mel_fn( sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax ) str_key_mel_basis = str(fmax) + "_" + str(y.device) mel_basis[str_key_mel_basis] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad( y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) # complex tensor as default, then use view_as_real for future pytorch compatibility spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(mel_basis[str_key_mel_basis], spec) spec = spectral_normalize_torch(spec) return spec kaiser_best_resampling_fn = partial( ta_resample_fn, resampling_method="sinc_interp_kaiser", # DO NOT CHANGE! rolloff=0.917347, # DO NOT CHANGE! beta=12.9846, # DO NOT CHANGE! lowpass_filter_width=50, # DO NOT CHANGE! ) class MelSpectrogramExtractor(object): def __init__( self, n_fft=1024, win_size=1024, num_mels=100, hop_size=160, sampling_rate=16000, fmin=0, fmax=None, ): self.n_fft = n_fft self.win_size = win_size self.num_mels = num_mels self.hop_size = hop_size self.sampling_rate = sampling_rate self.fmin = fmin self.fmax = fmax def __call__(self, wav_path) -> np.ndarray: wav_data, wav_sr = librosa.load(wav_path, sr=None, mono=True) wav_data = torch.from_numpy(wav_data.copy()).unsqueeze(0) # for 16k wavs, up-downsample to reduce artifects if wav_sr == self.sampling_rate: wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=24000) wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=24000, new_freq=self.sampling_rate) else: wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=self.sampling_rate) # (1, num_mels, t) mel = mel_spectrogram( wav_data, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, ) mel = mel.squeeze(0).transpose(1, 0) return mel # (t, num_mels)