import gradio as gr import torch from sahi.classification import ImageClassification from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO def yolov8_inference( image: gr.Image = None, model_path: gr.Dropdown = None, image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.25, iou_threshold: gr.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold """ model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou']= iou_threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # observe results top_class_index = torch.argmax(results[0].probs).item() Class = model.names[top_class_index] print(Class) inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Dropdown(["foduucom/Tyre-Quality-Classification-AI"], default="foduucom/Tyre-Quality-Classification-AI", label="Model"), gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="filepath", label="Output Image") title = "AI-Powered Tire Quality Inspection: YOLOv8s Enhanced Classification" Space Description:""" Welcome to our 🤖 AI-Powered Tire Quality Inspection Space – a cutting-edge solution harnessing the capabilities of YOLOv8s to revolutionize 🚗 tire quality control processes. """ About This Space: """ This interactive platform empowers you to classify tires with unparalleled precision, utilizing a fine-tuned YOLOv8s model 🎯 specifically developed for identifying defects in tire manufacturing. By submitting an image of a tire, you can instantly determine whether it meets the rigorous quality standards required in the industry, helping to ensure safety and reliability in automotive products. """ examples = [['samples/1.jpeg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45], ['samples/2.jpg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, description=description, examples=examples, cache_examples=True, theme='huggingface', ) demo_app.queue().launch(debug=True)