import gradio as gr from ultralytics import YOLO # catgories categories =['Defective_Tyre','Good_Tyre'] # returning classifiers output def image_classifier(inp): model = YOLO("best.pt") result = model.predict(source=inp) probs = result[0].probs.data # Combine the two lists and sort based on values in descending order sorted_pairs = sorted(zip(categories, probs), key=lambda x: x[1], reverse=True) result = [] for name, value in sorted_pairs: result.append(f'{name}: {value * 100:.2f}%') return ', '.join(result) # gradio code block for input and output with gr.Blocks() as app: gr.Markdown("## Classification for tyre Quality measure (Good tyre and defective tyre) on Yolo-v8") with gr.Row(): inp_img = gr.Image() out_txt = gr.Textbox() btn = gr.Button(value="Submeter") btn.click(image_classifier, inputs=inp_img, outputs=out_txt) gr.Markdown("## Exemplos") gr.Examples( examples=['Sample/Good tyre.png', 'Sample/Bald tyre.jpg'], inputs=inp_img, outputs=out_txt, fn=image_classifier, cache_examples=True, ) app.launch(share=True)