import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO # Images torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg') torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg') torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') def yolov8_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(model_path) model.conf = conf_threshold model.iou = iou_threshold results = model.predict(image, imgsz=image_size, return_outputs=True) object_prediction_list = [] for _, image_results in enumerate(results): if len(image_results)!=0: image_predictions_in_xyxy_format = image_results['det'] for pred in image_predictions_in_xyxy_format: x1, y1, x2, y2 = ( int(pred[0]), int(pred[1]), int(pred[2]), int(pred[3]), ) bbox = [x1, y1, x2, y2] score = pred[4] category_name = model.model.names[int(pred[5])] category_id = pred[5] object_prediction = ObjectPrediction( bbox=bbox, category_id=int(category_id), score=score, category_name=category_name, ) object_prediction_list.append(object_prediction) image = read_image(image) output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) return output_image['image'] inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["foduucom/table-detection-and-extraction"], default="foduucom/table-detection-and-extraction", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "YoloTableExtract: Efficient Table Detection" description = "🔍 YoloTableExtract is a powerful space that utilizes YOLOv8 for accurate table detection and extraction. Whether tables are bordered or borderless, this space can effectively identify and extract them from images. For further assistance and support related to documentation or data-related issues, feel free to contact info@foduu.com. If you find this space helpful, please show your appreciation by liking it. ❤️👍🏼" examples = [['highway.jpg', 'foduucom/table-detection-and-extraction', 640, 0.25, 0.45], ['highway1.jpg', 'foduucom/table-detection-and-extraction', 640, 0.25, 0.45], ['small-vehicles1.jpeg', 'foduucom/table-detection-and-extraction', 1280, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, description=description, examples=examples, cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True)