import gradio as gr import cv2 import requests import os import torch from ultralytics import YOLO file_urls = [ 'https://huggingface.co/spaces/foduucom/object_detection/tree/main/samples/1.jpeg', 'https://huggingface.co/spaces/foduucom/object_detection/tree/main/samples/2.JPG', ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): if 'mp4' in file_urls[i]: print('enter the image data') else: download_file( file_urls[i], f"image_{i}.jpg" ) model = YOLO('best.pt') path = [['image_0.jpg'], ['image_1.jpg']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="thermal image Object detection app", examples=path, cache_examples=False, ) gr.TabbedInterface( [interface_image], tab_names=['Image inference'] ).queue().launch()