import streamlit as st import pandas as pd import torch from transformers import pipeline import datetime # Load the CSV file and ensure proper formatting df = pd.read_csv("anomalies.csv", quotechar='"') # Convert 'real' column to standard float format and then to strings df['real'] = df['real'].apply(lambda x: f"{x:.2f}") # Fill NaN values and convert all columns to strings df = df.fillna('').astype(str) # Truncate long strings in 'Group' column if necessary df['Group'] = df['Group'].str.slice(0, 255) # Function to generate a response using the TAPAS model def response(user_question, df): a = datetime.datetime.now() # Initialize the TAPAS model tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", tokenizer_kwargs={"clean_up_tokenization_spaces": False}) # Debugging information print("DataFrame shape:", df.shape) print("DataFrame head:\n", df.head()) print("User question:", user_question) # Query the TAPAS model try: answer = tqa(table=df, query=user_question)['answer'] except IndexError as e: print(f"Error: {e}") answer = "Error occurred: " + str(e) query_result = { "Resposta": answer } b = datetime.datetime.now() print("Time taken:", b - a) return query_result # Streamlit interface st.markdown("""