import streamlit as st import pandas as pd import torch from transformers import TapexTokenizer, BartForConditionalGeneration import datetime # Load the CSV file df = pd.read_csv("anomalies.csv", quotechar='"') df.rename(columns={"ds": "Ano e mês", "real": "Valor Monetário", "Group": "Grupo"}, inplace=True) df.sort_values(by=['Ano e mês', 'Valor Monetário'], ascending=False, inplace=True) print(df) # Filter 'real' higher than 10 Million df= df[df['Valor Monetário'] >= 1000000.] # Convert 'real' column to standard float format and then to strings df['Valor Monetário'] = df['Valor Monetário'].apply(lambda x: f"{x:.2f}") # Fill NaN values and convert all columns to strings df = df.fillna('').astype(str) table_data = df # Function to generate a response using the TAPEX model def response(user_question, table_data): a = datetime.datetime.now() model_name = "microsoft/tapex-large-finetuned-wtq" model = BartForConditionalGeneration.from_pretrained(model_name) tokenizer = TapexTokenizer.from_pretrained(model_name) queries = [user_question] encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True) # Experiment with generation parameters outputs = model.generate( **encoding ) ans = tokenizer.batch_decode(outputs, skip_special_tokens=True) query_result = { "Resposta": ans[0] } b = datetime.datetime.now() print(b - a) return query_result # Streamlit interface st.dataframe(table_data.head()) st.markdown("""