import streamlit as st import pandas as pd from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer from prophet import Prophet import datetime import sentencepiece as spm st.markdown("""
PROTAX
PROphet & TApex EXplorer
""", unsafe_allow_html=True) # File upload interface uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) if uploaded_file: if 'all_anomalies' not in st.session_state: with st.spinner('Aplicando modelo de série temporal...'): # Load the file into a DataFrame if uploaded_file.name.endswith('.csv'): df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') elif uploaded_file.name.endswith('.xlsx'): df = pd.read_excel(uploaded_file) # Data preprocessing for Prophet new_df = df.iloc[2:, 9:-1].fillna(0) new_df.columns = df.iloc[1, 9:-1] new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True) month_dict = { 'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04', 'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08', 'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12' } def convert_column_name(column_name): if column_name == 'Rótulos de Linha': return column_name parts = column_name.split('/') month = parts[0].strip() year = parts[1].strip() year = ''.join(filter(str.isdigit, year)) month_number = month_dict.get(month, '00') return f"{month_number}/{year}" new_df.columns = [convert_column_name(col) for col in new_df.columns] new_df.columns = pd.to_datetime(new_df.columns, errors='coerce') new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True) df_clean = new_df.copy() # Create an empty DataFrame to store all anomalies all_anomalies = pd.DataFrame() # Process each row in the DataFrame for index, row in df_clean.iterrows(): data = pd.DataFrame({ 'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)], 'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values }) data = data[data['y'] > 0].reset_index(drop=True) if data.empty or len(data) < 2: print(f"Skipping group {row['Rotulo']} because there are less than 2 non-zero observations.") continue try: model = Prophet(interval_width=0.95) model.fit(data) except ValueError as e: print(f"Skipping group {row['Rotulo']} due to error: {e}") continue future = model.make_future_dataframe(periods=12, freq='M') forecast = model.predict(future) num_real = len(data) num_forecast = len(forecast) real_values = list(data['y']) + [None] * (num_forecast - num_real) forecast['real'] = real_values anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])] anomalies['Group'] = row['Rotulo'] all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True) # Store the result in session state all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "group"}, inplace=True) all_anomalies = all_anomalies[all_anomalies['monetary value'].astype('float') >= 10,000,000.00] all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}") all_anomalies.sort_values(by=['monetary value'], ascending=False, inplace=True) all_anomalies = all_anomalies.fillna('').astype(str) st.session_state['all_anomalies'] = all_anomalies # Load translation models pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") # Load TAPEX model tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) outputs = model.generate(input_ids) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text def response(user_question, table_data): question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) outputs = tapex_model.generate(**encoding) response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") return response_pt # Streamlit interface st.dataframe(st.session_state['all_anomalies'].head()) # Chat history if 'history' not in st.session_state: st.session_state['history'] = [] user_question = st.text_input("Escreva sua questão aqui:", "") if user_question: st.session_state['history'].append(('👤', user_question)) st.markdown(f"**👤 {user_question}**") bot_response = response(user_question, st.session_state['all_anomalies']) st.session_state['history'].append(('🤖', bot_response)) st.markdown(f"
**🤖 {bot_response}**
", unsafe_allow_html=True) if st.button("Limpar"): st.session_state['history'] = [] for sender, message in st.session_state['history']: if sender == '👤': st.markdown(f"**👤 {message}**") elif sender == '🤖': st.markdown(f"
**🤖 {message}**
", unsafe_allow_html=True) else: st.warning("Por favor, carregue um arquivo CSV ou XLSX para começar.")