import streamlit as st import pandas as pd import torch from transformers import TapexTokenizer, BartForConditionalGeneration import datetime # Load the CSV file df = pd.read_csv("anomalies.csv", quotechar='"') # Filter 'real' higher than 10 Million df= df[df['real'] >= 1000000.] # Convert 'real' column to standard float format and then to strings df['real'] = df['real'].apply(lambda x: f"{x:.2f}") # Fill NaN values and convert all columns to strings df = df.fillna('').astype(str) table_data = df # Function to generate a response using the TAPEX model def response(user_question, table_data): a = datetime.datetime.now() model_name = "microsoft/tapex-large-finetuned-wtq" model = BartForConditionalGeneration.from_pretrained(model_name) tokenizer = TapexTokenizer.from_pretrained(model_name) queries = [user_question] encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True) # Experiment with generation parameters outputs = model.generate( **encoding, #num_beams=5, # Beam search to generate more diverse responses #top_k=50, # Top-k sampling for diversity #top_p=0.95, # Nucleus sampling #temperature=0.7, # Temperature scaling (if supported by the model) #max_length=50, # Limit the length of the generated response #early_stopping=True # Stop generation when an end token is generated ) ans = tokenizer.batch_decode(outputs, skip_special_tokens=True) query_result = { "Resposta": ans[0] } b = datetime.datetime.now() print(b - a) return query_result # Streamlit interface st.markdown("""