import gradio as gr from langchain.llms.openai import OpenAI import os from langchain.agents import initialize_agent from langchain.agents import load_tools os.environ["OPENAI_API_KEY"] = "sk-dDPyQHpuXcMDDP5PmFgnT3BlbkFJLdhOV60RNrnf5xp5DUc" os.environ["SERPAPI_API_KEY"] = "e109a79c9b6a844c889c8b3f65430f3ea17c4362de514eafeb6030414ec6f808" llm = OpenAI(temperature=0, max_tokens=1000, model_name='text-davinci-003') def answer_question(question): agent_exe = initialize_agent( llm=OpenAI(temperature=0), tools=load_tools(["python_repl", "serpapi", "llm-math"], llm=llm), return_intermediate_steps=True, verbose=True, ) response = agent_exe({"input": question}) answer = response["output"] steps = response["intermediate_steps"] return answer, steps ifaces = gr.Interface( fn=answer_question, inputs=gr.Textbox(label="Question", placeholder="What's the square root, of the age, of Leonardo DiCaprio's latest girlfriend"), outputs=[gr.Textbox(label="Answer"), gr.JSON(label="Steps", show_label=False)], title="Helpful Agent", description="This is an Agent, which uses OpenAI's text-davinci-003 model, and the tools: SerpAPI, Python REPL, and Language Learning Machine Math, depending on your request" ) ifaces.launch()