from pathlib import Path # ENV when using standalone uvicorn server running FastAPI in api directory ENV_PATH = Path('../../env/online.env') ONE_DAY_SEC = 24*60*60 ONE_WEEK_SEC = ONE_DAY_SEC*7 PIPELINE_FUNCTION_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/pipeline_func/pipeline_functions.joblib" RANDOM_FOREST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/RandomForestClassifier.joblib" XGBOOST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/XGBClassifier.joblib" ADABOOST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/AdaBoostClassifier.joblib" CATBOOST_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/CatBoostClassifier.joblib" DECISION_TREE_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/DecisionTreeClassifier.joblib" KNN_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/KNeighborsClassifier.joblib" LGBM_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/LGBMClassifier.joblib" LOG_REG_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/LogisticRegression.joblib" SVC_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/SVC.joblib" ENCODER_URL = "https://raw.githubusercontent.com/D0nG4667/sepsis_prediction_full_stack/main/dev/models/enc/encoder.joblib" ALL_MODELS = { "AdaBoostClassifier": ADABOOST_URL, "CatBoostClassifier": CATBOOST_URL, "DecisionTreeClassifier": DECISION_TREE_URL, "KNeighborsClassifier": KNN_URL, "LGBMClassifier": LGBM_URL, "LogisticRegression": LOG_REG_URL, "RandomForestClassifier": RANDOM_FOREST_URL, "SupportVectorClassifier": SVC_URL, "XGBoostClassifier": XGBOOST_URL } DESCRIPTION = """ This API identifies ICU patients at risk of developing sepsis using `9 models` of which `Random Forest Classifier` and `XGBoost Classifier` are the best.\n The models were trained on [The John Hopkins University datasets at Kaggle](https://www.kaggle.com/datasets/chaunguynnghunh/sepsis?select=README.md).\n ### Features `PRG:` Plasma glucose\n `PL:` Blood Work Result-1 (mu U/ml)\n `PR:` Blood Pressure (mm Hg)\n `SK:` Blood Work Result-2 (mm)\n `TS:` Blood Work Result-3 (mu U/ml)\n `M11:` Body mass index (weight in kg/(height in m)^2\n `BD2:` Blood Work Result-4 (mu U/ml)\n `Age:` patients age (years)\n `Insurance:` If a patient holds a valid insurance card\n ### Results **Sepsis prediction:** *Positive* if a patient in ICU will develop a sepsis, and *Negative* otherwise\n **Sepsis probability:** In percentage\n ### GraphQL API To explore the GraphQL sub-application (built-with strawberry) to this RESTFul API click the link below.\n 🍓[GraphQL](/graphql) ### Let's Connect 👨‍⚕️ `Gabriel Okundaye`\n [LinkedIn LinkendIn](https://www.linkedin.com/in/dr-gabriel-okundaye) [GitHub GitHub](https://github.com/D0nG4667/sepsis_prediction_full_stack) """