from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter from aimakerspace.vectordatabase import VectorDatabase import asyncio import os import openai from getpass import getpass from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, AssistantRolePrompt, ) from aimakerspace.openai_utils.chatmodel import ChatOpenAI import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools text_loader = TextFileLoader("data/KingLear.txt") documents = text_loader.load_documents() len(documents) print(documents[0][:600]) text_splitter = CharacterTextSplitter() split_documents = text_splitter.split_texts(documents) len(split_documents) split_documents[0:1] vector_db = VectorDatabase() vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) #vector_db.search_by_text("Your servant Kent. Where is your servant Caius?", k=3) chat_openai = ChatOpenAI() user_prompt_template = "{content}" user_role_prompt = UserRolePrompt(user_prompt_template) system_prompt_template = ( "You are an expert in {expertise}, you always answer in a kind way." ) system_role_prompt = SystemRolePrompt(system_prompt_template) messages = [ user_role_prompt.create_message( content="What is the best way to write a loop?" ), system_role_prompt.create_message(expertise="Python"), ] #response = chat_openai.run(messages) #print(response) RAQA_PROMPT_TEMPLATE = """ Use the provided context to answer the user's query. You may not answer the user's query unless there is specific context in the following text. If you do not know the answer, or cannot answer, please respond with "I don't know". Context: {context} """ raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE) USER_PROMPT_TEMPLATE = """ User Query: {user_query} """ user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) class RetrievalAugmentedQAPipeline: def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: self.llm = llm self.vector_db_retriever = vector_db_retriever def run_pipeline(self, user_query: str) -> str: context_list = self.vector_db_retriever.search_by_text(user_query, k=4) context_prompt = "" for context in context_list: context_prompt += context[0] + "\n" formatted_system_prompt = raqa_prompt.create_message(context=context_prompt) formatted_user_prompt = user_prompt.create_message(user_query=user_query) return self.llm.run([formatted_system_prompt, formatted_user_prompt]) retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( vector_db_retriever=vector_db, llm=chat_openai ) #print(retrieval_augmented_qa_pipeline.run_pipeline("Who is King Lear?")) @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): settings = { "model": "gpt-3.5-turbo", "temperature": 0, "max_tokens": 500, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, } cl.user_session.set("settings", settings) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: cl.Message): await cl.Message(content=retrieval_augmented_qa_pipeline.run_pipeline(message.content), elements=[]).send()