from model import create_vgg_model from data_setup import preprocess, deprocess, get_features, gram_matrix from loss_functions import content_loss, style_loss, total_loss from torch import optim from pathlib import Path import numpy as np import gradio as gr from PIL import Image def predict(content_image, style_image): # Create model model = create_vgg_model() # Transform images content_img = preprocess(content_image) style_img = preprocess(style_image) target_img = content_img.clone().requires_grad_(True) content_features = get_features(content_img, model) style_features = get_features(style_img, model) style_gram = {layer: gram_matrix(style_features[layer]) for layer in style_features} # Inference optimizer = optim.Adam([target_img], lr=0.06) alpha_param = 1 beta_param = 1e2 epochs = 60 for i in range(epochs): target_features = get_features(target_img, model) c_loss = content_loss(target_features['layer_4'], content_features['layer_4']) s_loss = style_loss(target_features, style_gram) t_loss = total_loss(c_loss, s_loss, alpha_param, beta_param) optimizer.zero_grad() t_loss.backward() optimizer.step() results = deprocess(target_img) return Image.fromarray((results * 255).astype(np.uint8)) # Gradio Interface example_list = [['content/content1.jpg', 'style/style1.jpg'], ['content/content2.jpg', 'style/style2.jpg'], ['content/content3.jpg', 'style/style3.jpg']] title = "Neural Style Transfer 🎨" description = "It will take about 1 minute for the result to be displayed. Since the algorithm runs a small number of epochs (to reduce the waiting time), the result will not always be as good as it should be." demo = gr.Interface(fn=predict, inputs=['image', 'image'], outputs=gr.Image().style(width=256, height=256), examples=example_list, title=title, description=description) demo.launch(debug=False, share=False)