# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import random import imageio import os import torch import torch.nn as nn from random import randint from utils.loss_utils import l1_loss, ssim, tv_loss from gaussian_renderer import render, network_gui import sys from scene import Scene, GaussianModel from utils.general_utils import safe_state import uuid from tqdm import tqdm from utils.image_utils import psnr from argparse import ArgumentParser, Namespace from arguments import ModelParams, PipelineParams, OptimizationParams, GenerateCamParams, GuidanceParams import math import yaml from torchvision.utils import save_image import torchvision.transforms as T try: from torch.utils.tensorboard import SummaryWriter TENSORBOARD_FOUND = True except ImportError: TENSORBOARD_FOUND = False sys.path.append('/root/yangxin/codebase/3D_Playground/GSDF') def adjust_text_embeddings(embeddings, azimuth, guidance_opt): #TODO: add prenerg functions text_z_list = [] weights_list = [] K = 0 #for b in range(azimuth): text_z_, weights_ = get_pos_neg_text_embeddings(embeddings, azimuth, guidance_opt) K = max(K, weights_.shape[0]) text_z_list.append(text_z_) weights_list.append(weights_) # Interleave text_embeddings from different dirs to form a batch text_embeddings = [] for i in range(K): for text_z in text_z_list: # if uneven length, pad with the first embedding text_embeddings.append(text_z[i] if i < len(text_z) else text_z[0]) text_embeddings = torch.stack(text_embeddings, dim=0) # [B * K, 77, 768] # Interleave weights from different dirs to form a batch weights = [] for i in range(K): for weights_ in weights_list: weights.append(weights_[i] if i < len(weights_) else torch.zeros_like(weights_[0])) weights = torch.stack(weights, dim=0) # [B * K] return text_embeddings, weights def get_pos_neg_text_embeddings(embeddings, azimuth_val, opt): if azimuth_val >= -90 and azimuth_val < 90: if azimuth_val >= 0: r = 1 - azimuth_val / 90 else: r = 1 + azimuth_val / 90 start_z = embeddings['front'] end_z = embeddings['side'] # if random.random() < 0.3: # r = r + random.gauss(0, 0.08) pos_z = r * start_z + (1 - r) * end_z text_z = torch.cat([pos_z, embeddings['front'], embeddings['side']], dim=0) if r > 0.8: front_neg_w = 0.0 else: front_neg_w = math.exp(-r * opt.front_decay_factor) * opt.negative_w if r < 0.2: side_neg_w = 0.0 else: side_neg_w = math.exp(-(1-r) * opt.side_decay_factor) * opt.negative_w weights = torch.tensor([1.0, front_neg_w, side_neg_w]) else: if azimuth_val >= 0: r = 1 - (azimuth_val - 90) / 90 else: r = 1 + (azimuth_val + 90) / 90 start_z = embeddings['side'] end_z = embeddings['back'] # if random.random() < 0.3: # r = r + random.gauss(0, 0.08) pos_z = r * start_z + (1 - r) * end_z text_z = torch.cat([pos_z, embeddings['side'], embeddings['front']], dim=0) front_neg_w = opt.negative_w if r > 0.8: side_neg_w = 0.0 else: side_neg_w = math.exp(-r * opt.side_decay_factor) * opt.negative_w / 2 weights = torch.tensor([1.0, side_neg_w, front_neg_w]) return text_z, weights.to(text_z.device) def prepare_embeddings(guidance_opt, guidance): embeddings = {} # text embeddings (stable-diffusion) and (IF) embeddings['default'] = guidance.get_text_embeds([guidance_opt.text]) embeddings['uncond'] = guidance.get_text_embeds([guidance_opt.negative]) for d in ['front', 'side', 'back']: embeddings[d] = guidance.get_text_embeds([f"{guidance_opt.text}, {d} view"]) embeddings['inverse_text'] = guidance.get_text_embeds(guidance_opt.inverse_text) return embeddings def guidance_setup(guidance_opt): if guidance_opt.guidance=="SD": from guidance.sd_utils import StableDiffusion guidance = StableDiffusion(guidance_opt.g_device, guidance_opt.fp16, guidance_opt.vram_O, guidance_opt.t_range, guidance_opt.max_t_range, num_train_timesteps=guidance_opt.num_train_timesteps, ddim_inv=guidance_opt.ddim_inv, textual_inversion_path = guidance_opt.textual_inversion_path, LoRA_path = guidance_opt.LoRA_path, guidance_opt=guidance_opt) else: raise ValueError(f'{guidance_opt.guidance} not supported.') if guidance is not None: for p in guidance.parameters(): p.requires_grad = False embeddings = prepare_embeddings(guidance_opt, guidance) return guidance, embeddings def training(dataset, opt, pipe, gcams, guidance_opt, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, save_video): first_iter = 0 tb_writer = prepare_output_and_logger(dataset) gaussians = GaussianModel(dataset.sh_degree) scene = Scene(dataset, gcams, gaussians) gaussians.training_setup(opt) if checkpoint: (model_params, first_iter) = torch.load(checkpoint) gaussians.restore(model_params, opt) bg_color = [1, 1, 1] if dataset._white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device=dataset.data_device) iter_start = torch.cuda.Event(enable_timing = True) iter_end = torch.cuda.Event(enable_timing = True) # save_folder = os.path.join(dataset._model_path,"train_process/") if not os.path.exists(save_folder): os.makedirs(save_folder) # makedirs print('train_process is in :', save_folder) #controlnet use_control_net = False #set up pretrain diffusion models and text_embedings guidance, embeddings = guidance_setup(guidance_opt) viewpoint_stack = None viewpoint_stack_around = None ema_loss_for_log = 0.0 progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress") first_iter += 1 if opt.save_process: save_folder_proc = os.path.join(scene.args._model_path,"process_videos/") if not os.path.exists(save_folder_proc): os.makedirs(save_folder_proc) # makedirs process_view_points = scene.getCircleVideoCameras(batch_size=opt.pro_frames_num,render45=opt.pro_render_45).copy() save_process_iter = opt.iterations // len(process_view_points) pro_img_frames = [] for iteration in range(first_iter, opt.iterations + 1): #TODO: DEBUG NETWORK_GUI if network_gui.conn == None: network_gui.try_connect() while network_gui.conn != None: try: net_image_bytes = None custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive() if custom_cam != None: net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"] net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy()) network_gui.send(net_image_bytes, guidance_opt.text) if do_training and ((iteration < int(opt.iterations)) or not keep_alive): break except Exception as e: network_gui.conn = None iter_start.record() gaussians.update_learning_rate(iteration) gaussians.update_feature_learning_rate(iteration) gaussians.update_rotation_learning_rate(iteration) gaussians.update_scaling_learning_rate(iteration) # Every 500 its we increase the levels of SH up to a maximum degree if iteration % 500 == 0: gaussians.oneupSHdegree() # progressively relaxing view range if not opt.use_progressive: if iteration >= opt.progressive_view_iter and iteration % opt.scale_up_cameras_iter == 0: scene.pose_args.fovy_range[0] = max(scene.pose_args.max_fovy_range[0], scene.pose_args.fovy_range[0] * opt.fovy_scale_up_factor[0]) scene.pose_args.fovy_range[1] = min(scene.pose_args.max_fovy_range[1], scene.pose_args.fovy_range[1] * opt.fovy_scale_up_factor[1]) scene.pose_args.radius_range[1] = max(scene.pose_args.max_radius_range[1], scene.pose_args.radius_range[1] * opt.scale_up_factor) scene.pose_args.radius_range[0] = max(scene.pose_args.max_radius_range[0], scene.pose_args.radius_range[0] * opt.scale_up_factor) scene.pose_args.theta_range[1] = min(scene.pose_args.max_theta_range[1], scene.pose_args.theta_range[1] * opt.phi_scale_up_factor) scene.pose_args.theta_range[0] = max(scene.pose_args.max_theta_range[0], scene.pose_args.theta_range[0] * 1/opt.phi_scale_up_factor) # opt.reset_resnet_iter = max(500, opt.reset_resnet_iter // 1.25) scene.pose_args.phi_range[0] = max(scene.pose_args.max_phi_range[0] , scene.pose_args.phi_range[0] * opt.phi_scale_up_factor) scene.pose_args.phi_range[1] = min(scene.pose_args.max_phi_range[1], scene.pose_args.phi_range[1] * opt.phi_scale_up_factor) print('scale up theta_range to:', scene.pose_args.theta_range) print('scale up radius_range to:', scene.pose_args.radius_range) print('scale up phi_range to:', scene.pose_args.phi_range) print('scale up fovy_range to:', scene.pose_args.fovy_range) # Pick a random Camera if not viewpoint_stack: viewpoint_stack = scene.getRandTrainCameras().copy() C_batch_size = guidance_opt.C_batch_size viewpoint_cams = [] images = [] text_z_ = [] weights_ = [] depths = [] alphas = [] scales = [] text_z_inverse =torch.cat([embeddings['uncond'],embeddings['inverse_text']], dim=0) for i in range(C_batch_size): try: viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) except: viewpoint_stack = scene.getRandTrainCameras().copy() viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) #pred text_z azimuth = viewpoint_cam.delta_azimuth text_z = [embeddings['uncond']] if guidance_opt.perpneg: text_z_comp, weights = adjust_text_embeddings(embeddings, azimuth, guidance_opt) text_z.append(text_z_comp) weights_.append(weights) else: if azimuth >= -90 and azimuth < 90: if azimuth >= 0: r = 1 - azimuth / 90 else: r = 1 + azimuth / 90 start_z = embeddings['front'] end_z = embeddings['side'] else: if azimuth >= 0: r = 1 - (azimuth - 90) / 90 else: r = 1 + (azimuth + 90) / 90 start_z = embeddings['side'] end_z = embeddings['back'] text_z.append(r * start_z + (1 - r) * end_z) text_z = torch.cat(text_z, dim=0) text_z_.append(text_z) # Render if (iteration - 1) == debug_from: pipe.debug = True render_pkg = render(viewpoint_cam, gaussians, pipe, background, sh_deg_aug_ratio = dataset.sh_deg_aug_ratio, bg_aug_ratio = dataset.bg_aug_ratio, shs_aug_ratio = dataset.shs_aug_ratio, scale_aug_ratio = dataset.scale_aug_ratio) image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] depth, alpha = render_pkg["depth"], render_pkg["alpha"] scales.append(render_pkg["scales"]) images.append(image) depths.append(depth) alphas.append(alpha) viewpoint_cams.append(viewpoint_cams) images = torch.stack(images, dim=0) depths = torch.stack(depths, dim=0) alphas = torch.stack(alphas, dim=0) # Loss warm_up_rate = 1. - min(iteration/opt.warmup_iter,1.) guidance_scale = guidance_opt.guidance_scale _aslatent = False if iteration < opt.geo_iter or random.random()< opt.as_latent_ratio: _aslatent=True if iteration > opt.use_control_net_iter and (random.random() < guidance_opt.controlnet_ratio): use_control_net = True if guidance_opt.perpneg: loss = guidance.train_step_perpneg(torch.stack(text_z_, dim=1), images, pred_depth=depths, pred_alpha=alphas, grad_scale=guidance_opt.lambda_guidance, use_control_net = use_control_net ,save_folder = save_folder, iteration = iteration, warm_up_rate=warm_up_rate, weights = torch.stack(weights_, dim=1), resolution=(gcams.image_h, gcams.image_w), guidance_opt=guidance_opt,as_latent=_aslatent, embedding_inverse = text_z_inverse) else: loss = guidance.train_step(torch.stack(text_z_, dim=1), images, pred_depth=depths, pred_alpha=alphas, grad_scale=guidance_opt.lambda_guidance, use_control_net = use_control_net ,save_folder = save_folder, iteration = iteration, warm_up_rate=warm_up_rate, resolution=(gcams.image_h, gcams.image_w), guidance_opt=guidance_opt,as_latent=_aslatent, embedding_inverse = text_z_inverse) #raise ValueError(f'original version not supported.') scales = torch.stack(scales, dim=0) loss_scale = torch.mean(scales,dim=-1).mean() loss_tv = tv_loss(images) + tv_loss(depths) # loss_bin = torch.mean(torch.min(alphas - 0.0001, 1 - alphas)) loss = loss + opt.lambda_tv * loss_tv + opt.lambda_scale * loss_scale #opt.lambda_tv * loss_tv + opt.lambda_bin * loss_bin + opt.lambda_scale * loss_scale + loss.backward() iter_end.record() with torch.no_grad(): # Progress bar ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log if opt.save_process: if iteration % save_process_iter == 0 and len(process_view_points) > 0: viewpoint_cam_p = process_view_points.pop(0) render_p = render(viewpoint_cam_p, gaussians, pipe, background, test=True) img_p = torch.clamp(render_p["render"], 0.0, 1.0) img_p = img_p.detach().cpu().permute(1,2,0).numpy() img_p = (img_p * 255).round().astype('uint8') pro_img_frames.append(img_p) if iteration % 10 == 0: progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"}) progress_bar.update(10) if iteration == opt.iterations: progress_bar.close() # Log and save training_report(tb_writer, iteration, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background)) if (iteration in testing_iterations): if save_video: video_path = video_inference(iteration, scene, render, (pipe, background)) if (iteration in saving_iterations): print("\n[ITER {}] Saving Gaussians".format(iteration)) scene.save(iteration) # Densification if iteration < opt.densify_until_iter: # Keep track of max radii in image-space for pruning gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter]) gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter) if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0: size_threshold = 20 if iteration > opt.opacity_reset_interval else None gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold) if iteration % opt.opacity_reset_interval == 0: #or (dataset._white_background and iteration == opt.densify_from_iter) gaussians.reset_opacity() # Optimizer step if iteration < opt.iterations: gaussians.optimizer.step() gaussians.optimizer.zero_grad(set_to_none = True) if (iteration in checkpoint_iterations): print("\n[ITER {}] Saving Checkpoint".format(iteration)) torch.save((gaussians.capture(), iteration), scene._model_path + "/chkpnt" + str(iteration) + ".pth") if opt.save_process: imageio.mimwrite(os.path.join(save_folder_proc, "video_rgb.mp4"), pro_img_frames, fps=30, quality=8) return video_path, os.path.join(save_folder_proc, "video_rgb.mp4") def prepare_output_and_logger(args): if not args._model_path: if os.getenv('OAR_JOB_ID'): unique_str=os.getenv('OAR_JOB_ID') else: unique_str = str(uuid.uuid4()) args._model_path = os.path.join("./output/", args.workspace) # Set up output folder print("Output folder: {}".format(args._model_path)) os.makedirs(args._model_path, exist_ok = True) # copy configs if args.opt_path is not None: os.system(' '.join(['cp', args.opt_path, os.path.join(args._model_path, 'config.yaml')])) with open(os.path.join(args._model_path, "cfg_args"), 'w') as cfg_log_f: cfg_log_f.write(str(Namespace(**vars(args)))) # Create Tensorboard writer tb_writer = None if TENSORBOARD_FOUND: tb_writer = SummaryWriter(args._model_path) else: print("Tensorboard not available: not logging progress") return tb_writer def training_report(tb_writer, iteration, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs): if tb_writer: tb_writer.add_scalar('iter_time', elapsed, iteration) # Report test and samples of training set if iteration in testing_iterations: save_folder = os.path.join(scene.args._model_path,"test_six_views/{}_iteration".format(iteration)) if not os.path.exists(save_folder): os.makedirs(save_folder) # makedirs 创建文件时如果路径不存在会创建这个路径 print('test views is in :', save_folder) torch.cuda.empty_cache() config = ({'name': 'test', 'cameras' : scene.getTestCameras()}) if config['cameras'] and len(config['cameras']) > 0: for idx, viewpoint in enumerate(config['cameras']): render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs, test=True) rgb, depth = render_out["render"],render_out["depth"] if depth is not None: depth_norm = depth/depth.max() save_image(depth_norm,os.path.join(save_folder,"render_depth_{}.png".format(viewpoint.uid))) image = torch.clamp(rgb, 0.0, 1.0) save_image(image,os.path.join(save_folder,"render_view_{}.png".format(viewpoint.uid))) if tb_writer: tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.uid), image[None], global_step=iteration) print("\n[ITER {}] Eval Done!".format(iteration)) if tb_writer: tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration) tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration) torch.cuda.empty_cache() def video_inference(iteration, scene : Scene, renderFunc, renderArgs): sharp = T.RandomAdjustSharpness(3, p=1.0) save_folder = os.path.join(scene.args._model_path,"videos/{}_iteration".format(iteration)) if not os.path.exists(save_folder): os.makedirs(save_folder) # makedirs print('videos is in :', save_folder) torch.cuda.empty_cache() config = ({'name': 'test', 'cameras' : scene.getCircleVideoCameras()}) if config['cameras'] and len(config['cameras']) > 0: img_frames = [] depth_frames = [] print("Generating Video using", len(config['cameras']), "different view points") for idx, viewpoint in enumerate(config['cameras']): render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs, test=True) rgb,depth = render_out["render"],render_out["depth"] if depth is not None: depth_norm = depth/depth.max() depths = torch.clamp(depth_norm, 0.0, 1.0) depths = depths.detach().cpu().permute(1,2,0).numpy() depths = (depths * 255).round().astype('uint8') depth_frames.append(depths) image = torch.clamp(rgb, 0.0, 1.0) image = image.detach().cpu().permute(1,2,0).numpy() image = (image * 255).round().astype('uint8') img_frames.append(image) #save_image(image,os.path.join(save_folder,"lora_view_{}.jpg".format(viewpoint.uid))) # Img to Numpy imageio.mimwrite(os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration)), img_frames, fps=30, quality=8) if len(depth_frames) > 0: imageio.mimwrite(os.path.join(save_folder, "video_depth_{}.mp4".format(iteration)), depth_frames, fps=30, quality=8) print("\n[ITER {}] Video Save Done!".format(iteration)) torch.cuda.empty_cache() return os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration)) def args_parser(default_opt=None): # Set up command line argument parser parser = ArgumentParser(description="Training script parameters") parser.add_argument('--opt', type=str, default=default_opt) parser.add_argument('--ip', type=str, default="127.0.0.1") parser.add_argument('--port', type=int, default=6009) parser.add_argument('--debug_from', type=int, default=-1) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--detect_anomaly', action='store_true', default=False) parser.add_argument("--test_ratio", type=int, default=5) # [2500,5000,7500,10000,12000] parser.add_argument("--save_ratio", type=int, default=2) # [10000,12000] parser.add_argument("--save_video", type=bool, default=False) parser.add_argument("--quiet", action="store_true") parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[]) parser.add_argument("--start_checkpoint", type=str, default = None) parser.add_argument("--cuda", type=str, default='0') lp = ModelParams(parser) op = OptimizationParams(parser) pp = PipelineParams(parser) gcp = GenerateCamParams(parser) gp = GuidanceParams(parser) args = parser.parse_args(sys.argv[1:]) # os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda if args.opt is not None: with open(args.opt) as f: opts = yaml.load(f, Loader=yaml.FullLoader) lp.load_yaml(opts.get('ModelParams', None)) op.load_yaml(opts.get('OptimizationParams', None)) pp.load_yaml(opts.get('PipelineParams', None)) gcp.load_yaml(opts.get('GenerateCamParams', None)) gp.load_yaml(opts.get('GuidanceParams', None)) lp.opt_path = args.opt args.port = opts['port'] args.save_video = opts.get('save_video', True) args.seed = opts.get('seed', 0) args.device = opts.get('device', 'cuda') # override device gp.g_device = args.device lp.data_device = args.device gcp.device = args.device return args, lp, op, pp, gcp, gp def start_training(args, lp, op, pp, gcp, gp): # save iterations test_iter = [1] + [k * op.iterations // args.test_ratio for k in range(1, args.test_ratio)] + [op.iterations] args.test_iterations = test_iter save_iter = [k * op.iterations // args.save_ratio for k in range(1, args.save_ratio)] + [op.iterations] args.save_iterations = save_iter print('Test iter:', args.test_iterations) print('Save iter:', args.save_iterations) print("Optimizing " + lp._model_path) # Initialize system state (RNG) safe_state(args.quiet, seed=args.seed) # Start GUI server, configure and run training network_gui.init(args.ip, args.port) torch.autograd.set_detect_anomaly(args.detect_anomaly) video_path, pro_video_path = training(lp, op, pp, gcp, gp, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.save_video) # All done print("\nTraining complete.") return video_path, pro_video_path if __name__ == "__main__": args, lp, op, pp, gcp, gp = args_parser() start_training(args, lp, op, pp, gcp, gp)