from __future__ import annotations from abc import abstractmethod from typing import Sequence class Message: """ The base abstract Message class. Messages are the inputs and outputs of ChatModels. """ def __init__( self, content: str, role: str, additional_kwargs: dict = None ): self.content = content self.role = role self.additional_kwargs = ( additional_kwargs if additional_kwargs else {} ) @abstractmethod def get_type(self) -> str: pass class HumanMessage(Message): """ A Message from a human. """ def __init__( self, content: str, role: str = "Human", additional_kwargs: dict = None, example: bool = False, ): super().__init__(content, role, additional_kwargs) self.example = example def get_type(self) -> str: return "human" class AIMessage(Message): """ A Message from an AI. """ def __init__( self, content: str, role: str = "AI", additional_kwargs: dict = None, example: bool = False, ): super().__init__(content, role, additional_kwargs) self.example = example def get_type(self) -> str: return "ai" class SystemMessage(Message): """ A Message for priming AI behavior, usually passed in as the first of a sequence of input messages. """ def __init__( self, content: str, role: str = "System", additional_kwargs: dict = None, ): super().__init__(content, role, additional_kwargs) def get_type(self) -> str: return "system" class FunctionMessage(Message): """ A Message for passing the result of executing a function back to a model. """ def __init__( self, content: str, role: str = "Function", name: str = None, additional_kwargs: dict = None, ): super().__init__(content, role, additional_kwargs) self.name = name def get_type(self) -> str: return "function" class ChatMessage(Message): """ A Message that can be assigned an arbitrary speaker (i.e. role). """ def __init__( self, content: str, role: str, additional_kwargs: dict = None ): super().__init__(content, role, additional_kwargs) def get_type(self) -> str: return "chat" def get_buffer_string( messages: Sequence[Message], human_prefix: str = "Human", ai_prefix: str = "AI", ) -> str: string_messages = [] for m in messages: message = f"{m.role}: {m.content}" if ( isinstance(m, AIMessage) and "function_call" in m.additional_kwargs ): message += f"{m.additional_kwargs['function_call']}" string_messages.append(message) return "\n".join(string_messages) def message_to_dict(message: Message) -> dict: return {"type": message.get_type(), "data": message.__dict__} def messages_to_dict(messages: Sequence[Message]) -> list[dict]: return [message_to_dict(m) for m in messages] def message_from_dict(message: dict) -> Message: _type = message["type"] if _type == "human": return HumanMessage(**message["data"]) elif _type == "ai": return AIMessage(**message["data"]) elif _type == "system": return SystemMessage(**message["data"]) elif _type == "chat": return ChatMessage(**message["data"]) elif _type == "function": return FunctionMessage(**message["data"]) else: raise ValueError(f"Got unexpected message type: {_type}") def messages_from_dict(messages: list[dict]) -> list[Message]: return [message_from_dict(m) for m in messages]