from huggingface_hub import snapshot_download from katsu import Katsu from models import build_model import gradio as gr import noisereduce as nr import numpy as np import os import phonemizer import pypdf import random import re import spaces import torch import yaml random_texts = {} for lang in ['en', 'ja']: with open(f'{lang}.txt', 'r') as r: random_texts[lang] = [line.strip() for line in r] def get_random_text(voice): if voice[0] == 'j': lang = 'ja' else: lang = 'en' return random.choice(random_texts[lang]) def parens_to_angles(s): return s.replace('(', '«').replace(')', '»') def normalize(text): # TODO: Custom text normalization rules? text = text.replace('Dr.', 'Doctor') text = text.replace('Mr.', 'Mister') text = text.replace('Ms.', 'Miss') text = text.replace('Mrs.', 'Mrs') text = text.replace(chr(8216), "'").replace(chr(8217), "'") text = text.replace(chr(8220), '"').replace(chr(8221), '"') text = re.sub(r'[^\S \n]', ' ', text) text = re.sub(r' +', ' ', text) text = re.sub(r'(?<=\n) +(?=\n)', '', text) return parens_to_angles(text).strip() phonemizers = dict( a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True), b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True), j=Katsu(), ) def phonemize(text, voice, norm=True): lang = voice[0] if norm: text = normalize(text) ps = phonemizers[lang].phonemize([text]) ps = ps[0] if ps else '' # TODO: Custom phonemization rules? ps = parens_to_angles(ps) # https://en.wiktionary.org/wiki/kokoro#English ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ') ps = ''.join(filter(lambda p: p in VOCAB, ps)) if lang == 'j' and any(p in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for p in ps): gr.Warning('Japanese tokenizer does not handle English letters.') return ps.strip() def length_to_mask(lengths): mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) mask = torch.gt(mask+1, lengths.unsqueeze(1)) return mask def get_vocab(): _pad = "$" _punctuation = ';:,.!?¡¿—…"«»“” ' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) dicts = {} for i in range(len((symbols))): dicts[symbols[i]] = i return dicts VOCAB = get_vocab() def tokenize(ps): return [i for i in map(VOCAB.get, ps) if i is not None] device = 'cuda' if torch.cuda.is_available() else 'cpu' snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN']) config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml'))) model = build_model(config['model_params']) for key, value in model.items(): for module in value.children(): if isinstance(module, torch.nn.RNNBase): module.flatten_parameters() _ = [model[key].eval() for key in model] _ = [model[key].to(device) for key in model] for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items(): assert key in model, key try: model[key].load_state_dict(state_dict) except: state_dict = {k[7:]: v for k, v in state_dict.items()} model[key].load_state_dict(state_dict, strict=False) CHOICES = { '🇺🇸 🚺 American Female 0': 'af0', '🇺🇸 🚺 Bella': 'af1', '🇺🇸 🚺 Nicole': 'af2', '🇺🇸 🚹 Michael': 'am0', '🇺🇸 🚹 Adam': 'am1', '🇬🇧 🚺 British Female 0': 'bf0', '🇬🇧 🚺 British Female 1': 'bf1', '🇬🇧 🚺 British Female 2': 'bf2', '🇬🇧 🚹 British Male 0': 'bm0', '🇬🇧 🚹 British Male 1': 'bm1', '🇬🇧 🚹 British Male 2': 'bm2', '🇬🇧 🚹 British Male 3': 'bm3', '🇯🇵 🚺 Japanese Female 0': 'jf0', } VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} np_log_99 = np.log(99) def s_curve(p): if p <= 0: return 0 elif p >= 1: return 1 s = 1 / (1 + np.exp((1-p*2)*np_log_99)) s = (s-0.01) * 50/49 return s SAMPLE_RATE = 24000 @spaces.GPU(duration=5) @torch.no_grad() def forward(tokens, voice, speed): ref_s = VOICES[voice] tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) s = ref_s[:, 128:] d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) / speed pred_dur = torch.round(duration).clamp(min=1).long() pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 c_frame += pred_dur[0,i].item() en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) F0_pred, N_pred = model.predictor.F0Ntrain(en, s) t_en = model.text_encoder(tokens, input_lengths, text_mask) asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy() def generate(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000): ps = ps or phonemize(text, voice) tokens = tokenize(ps) if not tokens: return (None, '') elif len(tokens) > 510: tokens = tokens[:510] ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) try: out = forward(tokens, voice, speed) except gr.exceptions.Error as e: raise gr.Error(e) return (None, '') if reduce_noise > 0: out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512) opening_cut = max(0, int(opening_cut / speed)) if opening_cut > 0: out[:opening_cut] = 0 closing_cut = max(0, int(closing_cut / speed)) if closing_cut > 0: out[-closing_cut:] = 0 ease_in = min(int(ease_in / speed), len(out)//2 - opening_cut) for i in range(ease_in): out[i+opening_cut] *= s_curve(i / ease_in) ease_out = min(int(ease_out / speed), len(out)//2 - closing_cut) for i in range(ease_out): out[-i-1-closing_cut] *= s_curve(i / ease_out) return ((SAMPLE_RATE, out), ps) with gr.Blocks() as basic_tts: with gr.Row(): with gr.Column(): text = gr.Textbox(label='Input Text') voice = gr.Dropdown(list(CHOICES.items()), label='Voice') with gr.Row(): random_btn = gr.Button('Random Text', variant='secondary') generate_btn = gr.Button('Generate', variant='primary') random_btn.click(get_random_text, inputs=[voice], outputs=[text]) with gr.Accordion('Input Tokens', open=False): in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.') with gr.Row(): clear_btn = gr.ClearButton(in_ps) phonemize_btn = gr.Button('Tokenize Input Text', variant='primary') phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps]) with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio') with gr.Accordion('Output Tokens', open=True): out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.') with gr.Accordion('Audio Settings', open=False): with gr.Row(): reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.') with gr.Row(): speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The settings below are auto-scaled by speed.') with gr.Row(): with gr.Column(): opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='Opening Cut', info='✂️ Zero out this many samples at the start.') with gr.Column(): closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='Closing Cut', info='✂️ Zero out this many samples at the end.') with gr.Row(): with gr.Column(): ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.') with gr.Column(): ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.') generate_btn.click(generate, inputs=[text, voice, in_ps, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out], outputs=[audio, out_ps]) @spaces.GPU @torch.no_grad() def lf_forward(token_lists, voice, speed): ref_s = VOICES[voice] s = ref_s[:, 128:] outs = [] for tokens in token_lists: tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) / speed pred_dur = torch.round(duration).clamp(min=1).long() pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 c_frame += pred_dur[0,i].item() en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) F0_pred, N_pred = model.predictor.F0Ntrain(en, s) t_en = model.text_encoder(tokens, input_lengths, text_mask) asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) outs.append(model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()) return outs def resplit_strings(arr): # Handle edge cases if not arr: return '', '' if len(arr) == 1: return arr[0], '' # Try each possible split point min_diff = float('inf') best_split = 0 # Calculate lengths when joined with spaces lengths = [len(s) for s in arr] spaces = len(arr) - 1 # Total spaces needed # Try each split point left_len = 0 right_len = sum(lengths) + spaces for i in range(1, len(arr)): # Add current word and space to left side left_len += lengths[i-1] + (1 if i > 1 else 0) # Remove current word and space from right side right_len -= lengths[i-1] + 1 diff = abs(left_len - right_len) if diff < min_diff: min_diff = diff best_split = i # Join the strings with the best split point return ' '.join(arr[:best_split]), ' '.join(arr[best_split:]) def recursive_split(text, voice): if not text: return [] tokens = phonemize(text, voice, norm=False) if len(tokens) < 511: return [(text, tokens, len(tokens))] if tokens else [] if ' ' not in text: return [] for punctuation in ['!.?…', ':;', ',—']: splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text) if len(splits) > 1: break else: splits = None splits = splits or text.split(' ') a, b = resplit_strings(splits) return recursive_split(a, voice) + recursive_split(b, voice) def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2): if skip_square_brackets: text = re.sub(r'\[.*?\]', '', text) texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize(text))] if newline_split > 0 else [normalize(text)] segments = [row for t in texts for row in recursive_split(t, voice)] return [(i, *row) for i, row in enumerate(segments)] def lf_generate(segments, voice, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad=5000): token_lists = list(map(tokenize, segments['Tokens'])) wavs = [] opening_cut = max(0, int(opening_cut / speed)) closing_cut = max(0, int(closing_cut / speed)) pad = max(0, int(pad / speed)) batch_size = 100 for i in range(0, len(token_lists), batch_size): try: outs = lf_forward(token_lists[i:i+batch_size], voice, speed) except gr.exceptions.Error as e: if wavs: gr.Warning(str(e)) else: raise gr.Error(e) break for out in outs: if reduce_noise > 0: out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512) if opening_cut > 0: out[:opening_cut] = 0 if closing_cut > 0: out[-closing_cut:] = 0 ease_in = min(int(ease_in / speed), len(out)//2 - opening_cut) for i in range(ease_in): out[i+opening_cut] *= s_curve(i / ease_in) ease_out = min(int(ease_out / speed), len(out)//2 - closing_cut) for i in range(ease_out): out[-i-1-closing_cut] *= s_curve(i / ease_out) if wavs and pad > 0: wavs.append(np.zeros(pad)) wavs.append(out) return (SAMPLE_RATE, np.concatenate(wavs)) if wavs else None def did_change_segments(segments): x = len(segments) if segments['Length'].any() else 0 return [ gr.Button('Tokenize', variant='secondary' if x else 'primary'), gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0), ] def extract_text(file): if file.endswith('.pdf'): with open(file, 'rb') as rb: pdf_reader = pypdf.PdfReader(rb) return '\n'.join([page.extract_text() for page in pdf_reader.pages]) elif file.endswith('.txt'): with open(file, 'r') as r: return '\n'.join([line for line in r]) return None with gr.Blocks() as lf_tts: with gr.Row(): with gr.Column(): file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt') text = gr.Textbox(label='Input Text') file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text]) voice = gr.Dropdown(list(CHOICES.items()), label='Voice') with gr.Accordion('Text Settings', open=False): skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations.') newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0) with gr.Row(): segment_btn = gr.Button('Tokenize', variant='primary') generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False) with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio') with gr.Accordion('Audio Settings', open=False): with gr.Row(): reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.') with gr.Row(): speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The settings below are auto-scaled by speed.') with gr.Row(): with gr.Column(): opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='Opening Cut', info='✂️ Zero out this many samples at the start.') with gr.Column(): closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='Closing Cut', info='✂️ Zero out this many samples at the end.') with gr.Row(): with gr.Column(): ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.') with gr.Column(): ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.') with gr.Row(): pad = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Pad', info='🔇 How many samples of silence to insert between segments.') with gr.Row(): segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True) segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn]) segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments]) generate_btn.click(lf_generate, inputs=[segments, voice, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out, pad], outputs=[audio]) with gr.Blocks() as app: gr.TabbedInterface( [basic_tts, lf_tts], ['Basic TTS', 'Long-Form'], ) if __name__ == '__main__': app.launch()