import tensorflow.compat.v1 as tf import os import shutil import csv import sys import pandas as pd import numpy as np import IPython import streamlit as st import subprocess from itertools import islice import random #from transformers import pipeline from transformers import TapasTokenizer, TapasForQuestionAnswering tf.get_logger().setLevel('ERROR') #def install(package): #subprocess.run("python -m pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu102.html", shell=True) try: print(sys.executable) subprocess.check_call(["/home/user/.local/lib/python3.8", "-m", "pip", "install", 'torch-scatter','-f', 'https://data.pyg.org/whl/torch-1.10.0+cu102.html']) except Exception as e: print('Error..', str(e)) #install('torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu102.html') model_name = 'google/tapas-base-finetuned-wtq' #model_name = "table-question-answering" #model = pipeline(model_name) model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False) tokenizer = TapasTokenizer.from_pretrained(model_name) st.set_option('deprecation.showfileUploaderEncoding', False) st.title('Query your Table') st.header('Upload CSV file') uploaded_file = st.file_uploader("Choose your CSV file",type = 'csv') placeholder = st.empty() if uploaded_file is not None: data = pd.read_csv(uploaded_file) data.replace(',','', regex=True, inplace=True) if st.checkbox('Want to see the data?'): placeholder.dataframe(data) st.header('Enter your queries') input_queries = st.text_input('Type your queries separated by comma(,)',value='') input_queries = input_queries.split(',') colors1 = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(input_queries))] colors2 = ['background-color:'+str(color)+'; color: black' for color in colors1] def styling_specific_cell(x,tags,colors): df_styler = pd.DataFrame('', index=x.index, columns=x.columns) for idx,tag in enumerate(tags): for r,c in tag: df_styler.iloc[r, c] = colors[idx] return df_styler if st.button('Predict Answers'): with st.spinner('It will take approx a minute'): data = data.astype(str) inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="pt") outputs = model(**inputs) #outputs = model(table = data, query = queries) predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions( inputs, outputs.logits.detach(), outputs.logits_aggregation.detach()) id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3:"COUNT"} aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices] answers = [] for coordinates in predicted_answer_coordinates: if len(coordinates) == 1: # only a single cell: answers.append(table.iat[coordinates[0]]) else: # multiple cells cell_values = [] for coordinate in coordinates: cell_values.append(table.iat[coordinate]) answers.append(", ".join(cell_values)) st.success('Done! Please check below the answers and its cells highlighted in table above') placeholder.dataframe(data.style.apply(styling_specific_cell,tags=predicted_answer_coordinates,colors=colors2,axis=None)) for query, answer, predicted_agg, c in zip(queries, answers, aggregation_predictions_string, colors1): st.write('\n') st.markdown('**{}**'.format(c,query), unsafe_allow_html=True) st.write('\n') if predicted_agg == "NONE" or predicted_agg == 'COUNT': st.markdown('**>** '+str(answer)) else: if predicted_agg == 'SUM': st.markdown('**>** '+str(sum(answer.split(',')))) else: st.markdown('**>** '+str(np.round(np.mean(answer.split(',')),2)))