import numpy as np import pickle as pickle import os import sys import wget #os.system("git clone https://github.com/NVlabs/stylegan3") #sys.path.append('./stylegan3') model_names = { 'AFHQv2-512-R': 'stylegan3-r-afhqv2-512x512.pkl', 'FFHQ-1024-R': 'stylegan3-r-ffhq-1024x1024.pkl', 'FFHQ-U-256-R': 'stylegan3-r-ffhqu-256x256.pkl', 'FFHQ-U-1024-R': 'stylegan3-r-ffhqu-1024x1024.pkl', 'MetFaces-1024-R': 'stylegan3-r-metfaces-1024x1024.pkl', 'MetFaces-U-1024-R': 'stylegan3-r-metfacesu-1024x1024.pkl', 'AFHQv2-512-T': 'stylegan3-t-afhqv2-512x512.pkl', 'FFHQ-1024-T': 'stylegan3-t-ffhq-1024x1024.pkl', 'FFHQ-U-256-T': 'stylegan3-t-ffhqu-256x256.pkl', 'FFHQ-U-1024-T': 'stylegan3-t-ffhqu-1024x1024.pkl', 'MetFaces-1024-T': 'stylegan3-t-metfaces-1024x1024.pkl', 'MetFaces-U-1024-T': 'stylegan3-t-metfacesu-1024x1024.pkl', } model_dict = { name: file_name for name, file_name in model_names.items() } def fetch_model(url_or_path): basename = os.path.basename(url_or_path) if os.path.exists(basename): return basename else: wget.download(url_or_path) return basename def load_model(file_name: str, device: torch.device): #path = torch.hub.download_url_to_file('https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/'+f'{file_name}', # f'{file_name}') base_url = "https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/" network_url = base_url + f'{file_name}' local_path = '/content/'f'{file_name}' print(local_path) with open(fetch_model(network_url), 'rb') as f: model = pickle.load(f)['G_ema'] model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label) return model def generate_image(model_name: str, seed: int, truncation_psi: float): device = 'cuda' model = model_dict[model_name] model = load_model(model, device) seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = torch.from_numpy(np.random.RandomState(seed).randn(1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) out = model(z, label, truncation_psi=truncation_psi) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() import gradio as gr gr.Interface( generate_image, [ gr.inputs.Radio(list(model_names.keys()), type='value', default='FFHQ-1024-R', label='Model'), gr.inputs.Number(default=0, label='Seed'), gr.inputs.Slider( 0, 2, step=0.05, default=0.7, label='Truncation psi') ], gr.outputs.Image(type='numpy', label='Output') ).launch(debug=True )